

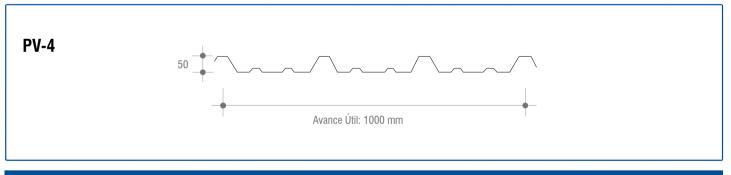

CINTAC® es líder en la fabricación y comercialización de sistemas constructivos, con la más amplia y profunda oferta de productos de acero, atiende las necesidades del mercado de la construcción la industria y la infraestructura.

Con presencia en Chile, Perú y gran parte de Latinoamérica, CINTAC® ofrece al mercado sus líneas de tubos, perfiles, cañerías, planchas, cubiertas, revestimientos, elementos estructurales y de infraestructura con propuestas innovadoras y un equipo técnico de excepción.

INSTAPANEL

Las tendencias en construcción y un mercado cada vez más exigente, han llevado a **CINTAC**® a desarrollar productos que permitan una alta velocidad de armado y una menor necesidad de servicio post venta.

CINTAC® presenta la más amplia oferta para la construcción a través de Instapanel, con cubiertas y revestimientos con y sin aislación y placas colaborantes, los que se ofrecen en diversos esquemas de pintura, dependiendo del ambiente en el que esté emplazada la obra y en el color que el cliente requiera gracias a que contamos con la más moderna planta de pintura.

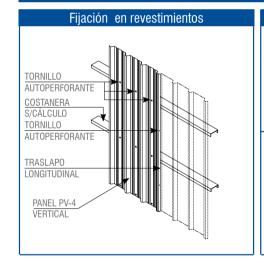

ÍNDICE

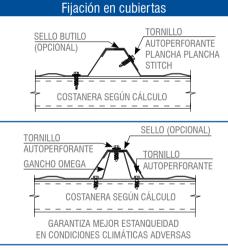
	PV-4	7
SOL	ACRYLIT	9
IMIENTOS	PV-6	11
Σ	PV-7	13
REVEST	PV-8	15
RE	PIT	17
S Y	ONDULADO 48	19
SUBIERTAS	PANELES CURVOS Y CONTRACURVOS	21
BE	PANELES PERFORADOS	
ಶ	CUBIERTAS ANTICONDENSANTES	25
	A-2	29
	KR-18	
	•••••••	
SOC	ISOPOL	
I'	KOVER POL	
AIS	E-KOVER	38
T0S	E-KOVER PUR L-804	
REVESTIMIENTOS AISLADOS	E-KOVER POL	
MIT:	ISOPUR	70
VES	ISOWALL	
8	KOVER L-804	
AS)	KOVER L-806	70
ERT	PANELES PIR	51
l B	PANELES CON LANA DE ROCA	53
3	KOVER LANA	
	ISO LANA	
S	ISO LANA ACÚSTICO	
NTE	INICTADECIA	
PLACAS ABORANTES	INSTADECK	
AB(PV3 RX	64

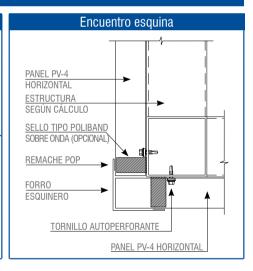
- Panel estructural, constituido por cuatro trapecios rigidizantes que garantizan estanqueidad y condiciones de resistencia.
- Permite combinación con paneles perforados y traslúcidos de igual geometría.
- Se fabrica en acero Zincalum® según norma ASTM A-792-99 AZ 50, calidad estructural Gr 37 o acero prepintado por una o ambas caras.
- El largo máximo del panel está limitado por la condición de transporte y manipulación (Mín. 1,5 m Máx. 14 m), largos superiores sujetos a consulta.

Tabla de Cargas

			Cargas Admisibles (kg/m²)									
					Dista	ncias entre	costaneras	(m)				
		1.00	1.25	1.50	1.75	2.00	2.25	2.50	2.75	3.00	3.25	3.50
0.4	Esfuerzo	315	200	138	100	76	59	47	38	31	-	-
0,4	Deformación	1105	564	324	203	134	93	67	49	37	-	-
0,5	Esfuerzo	461	293	202	147	111	87	69	56	46	39	33
0,0	Deformación	1382	705	406	254	168	116	83	61	46	35	-
0,6	Esfuerzo	610	388	268	195	148	115	92	75	62	52	44
0,0	Deformación	1659	846	487	304	202	140	100	74	55	42	32
0,8	Esfuerzo	927	590	407	297	225	176	141	115	96	80	68
0,0	Deformación	2212	1128	649	406	269	187	134	98	74	56	43
0,4	Esfuerzo	368	234	161	117	89	69	55	45	-	-	-
0,4	Deformación	2669	1364	788	494	330	230	167	124	95	73	58
 0,5	Esfuerzo	534	340	234	171	129	101	81	66	31	-	-
0,5	Deformación	3338	1706	985	618	412	288	209	155	118	92	73
0,6	Esfuerzo	720	459	317	231	175	137	63	51	42	35	-
0,0	Deformación	4005	2047	1182	742	495	346	250	186	142	110	87
0,8	Esfuerzo	974	620	428	312	154	120	96	78	64	53	45
0,0	Deformación	5340	2730	1576	989	660	461	334	249	190	147	116
0,4	Esfuerzo	461	294	202	148	112	88	70	36	-	-	-
0,4	Deformación	2090	1068	616	386	257	179	130	96	73	57	44
0,5	Esfuerzo	669	426	294	215	163	128	102	49	40	33	-
0,5	Deformación	2614	1335	771	483	322	224	162	121	92	71	56
0,6	Esfuerzo	902	575	397	290	221	101	80	65	54	45	38
0,0	Deformación	3136	1603	925	580	386	269	195	145	110	85	67
0,8	Esfuerzo	1219	777	537	393	195	152	122	99	82	69	58
υ,δ	Deformación	4181	2137	1233	773	515	359	260	193	147	114	89

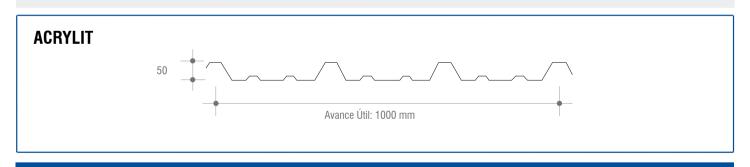

i) Se considera un acero de calidad ASTM A792 Gr.37 (Fy $= 2600 \text{ kg/cm}^2$). ii)Se considera un módulo de Elasticidad, E $= 2070000 \text{ kg/cm}^2$.

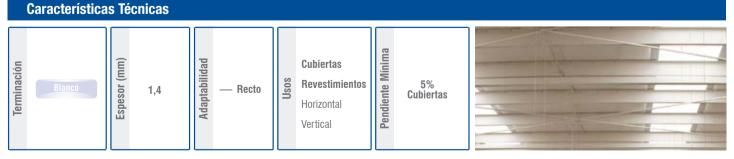

iii) Se considera una deformación admisible igual a L/200.


iv)"-" Carga admisible menor a 30 kg/m².

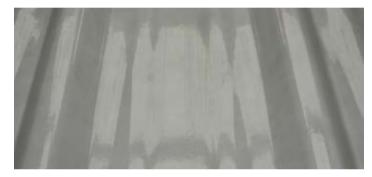
• Los valores indicados en la tabla corresponden a una luz de máxima permisible para sobrecarga uniformemente distribuida calculado teóricamente.

• Esta tabla se presenta como una guía. CINTAC® no se responsabiliza del uso que se le dé. Se reserva el derecho de modificar la información sin previo aviso.





- Panel traslúcido elaborado con resina 100% acrílica reforzada con fibra de vidrio que garantiza su resistencia mecánica y duración.
- Gran difusor de luz, lo cual permite que esta se distribuya uniformemente, eliminando sombras y una mejor iluminación natural con el consiguiente ahorro energético. Evita la concentración de luz y aumento local de la temperatura.
- Permite combinación con paneles de acero de igual geometría.
- Aminora las variaciones de color y las pérdidas de transparencia por la acción de la luz solar, humedad o cambios de temperatura (-20°C a 60°C).
- Alta tolerancia a los productos químicos, tales como: gases, ácidos, bases y solventes.
- Largo único 11,8 m.



Datos Técnicos

	NODELL ACTAL		1/41.00
	NORMA ASTM	UNIDAD DE MEDIDA	VALOR
Propiedades Físicas			Cristal Blanco
Trasmisión de Luz	D-1494	%	80% - 55%
Perdida de luz	-	-	-
0 Horas	E - 903	-	80 - 55
1,000	-	-	74,4 - 51,1
Perdida	-	%	7% - 7%
Difusión de luz	E - 903	-	95% - 95%
Amarillamiento	D- 1925	Delta	6 - D 5
Comentario	-	-	Cambio ligero
Propiedades Mecánicas			
Resistencia al Impacto	D - 256	j/M	370 - 370
Resistencia a la Tensión	D - 638	Kg/cm ²	820 - 820
Resistencia a la Flexión	D - 790	Kg/cm ²	1680 - 1680
Coeficiente de Expansión Lineal	D - 696	10 - D 5	2,6 - D 2,6
Otras Propiedades			
Conductividad Térmica	D - 5261	W/m	0,23 - D 0,23
Dureza Barcol	-	1/4K	40 - D 45 - D 40 - 45

Se recomienda uso de translucidez entre un 10% y un 15%.

Recomendaciones de uso

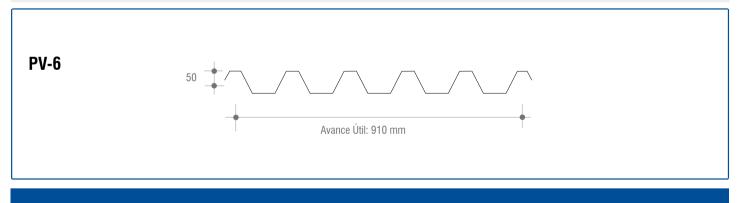
La distancia máxima recomendable entre apoyos es 2

Se puede fijar mediante tornillos autoperforantes 3

La longitud de alero ecomendable es de 4

Los traslapos deberán ser contrarios a la dirección del viento. 5

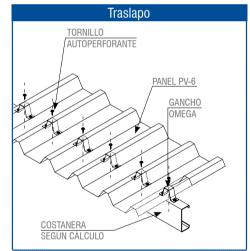
No pisar directamente sobre las láminas, se deben usar tablónes para distribuir la 6

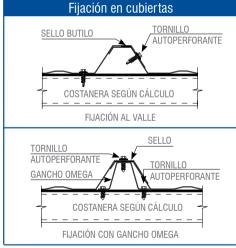

Evitar almacenar al sol o fuentes de calor directa como hornos, radiadores o estufas.

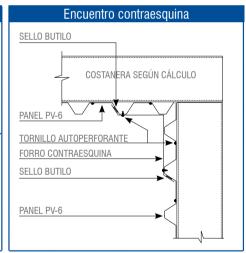
- Panel estructural, constituido por seis trapecios rigidizantes que garantizan estanqueidad y condiciones de resistencia.
- Permite combinación con paneles perforados y traslúcidos de igual geometría.
- Se fabrica en acero Zincalum[®] según norma ASTM A-792-99 AZ 50, calidad estructural Gr 37 o acero prepintado al horno por una o ambas caras.
- El largo máximo del panel está limitado por la condición de transporte y manipulación (Mín. 1,5 m Máx.14 m), largos superiores sujetos a consulta.

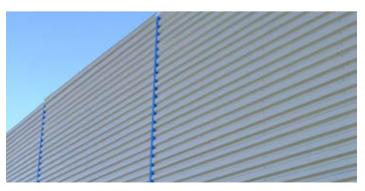
Tabla de Cargas Distancias entre costaneras (m) 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50 Esfuerzo 0,4 Deformación Esfuerzo 0.5 Deformación Esfuerzo 0.6 Deformación Esfuerzo 0.8 Deformación Esfuerzo 0,4 Deformación Esfuerzo 0,5 Deformación Esfuerzo 0,6 Deformación Esfuerzo 0.8 Deformación Esfuerzo 0.4 Deformación Esfuerzo 0,5 Deformación Esfuerzo 0,6 Deformación Esfuerzo

i) Se considera un acero de calidad ASTM A792 Gr.37 (Fy = 2600 kg/cm²). ii)Se considera un módulo de Elasticidad, E = 2070000 kg/cm².

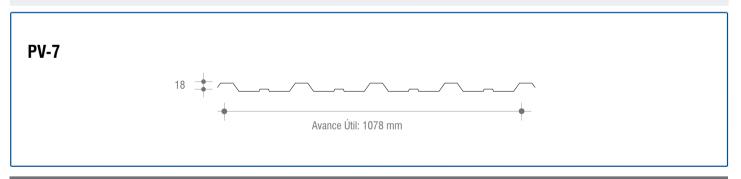

iii) Se considera una deformación admisible igual a L/200.


iv)"-" Carga admisible menor a 30 kg/m²

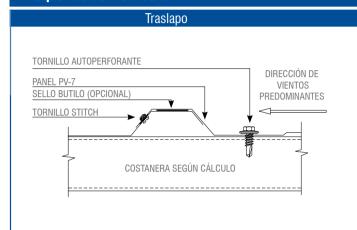

Los valores indicados en la tabla corresponden a una luz de máxima permisible para sobrecarga uniformemente distribuida calculado teóricamente.

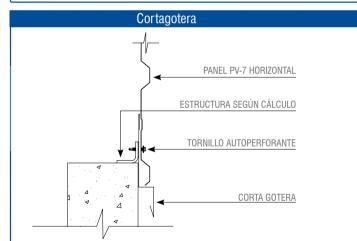

Deformación

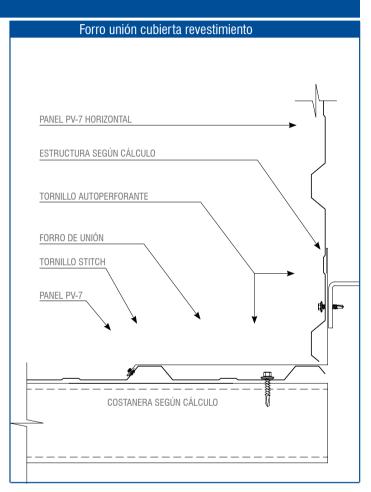
• Esta tabla se presenta como una quía. CINTAC® no se responsabiliza del uso que se le dé. Se reserva el derecho de modificar la información sin previo aviso.



- Panel estructural constituido por cinco trapecios rigidizantes y frisos intermedios, que le otorgan mayor rigidez y estética.
- Se fabrica en acero Zincalum® según norma ASTM 792 Az 50 (150 gr/m²), calidad estructural Gr 37 o acero prepintado por una o ambas caras.
- El largo máximo del panel está limitado por la condición de transporte y manipulación (Mín. 2,0 m Máx. 9,0), largos superiores sujetos a consulta.

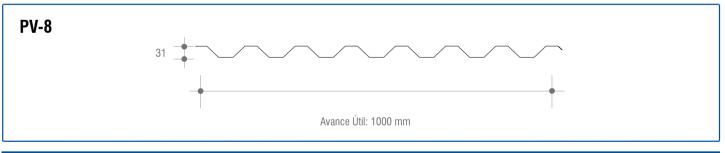


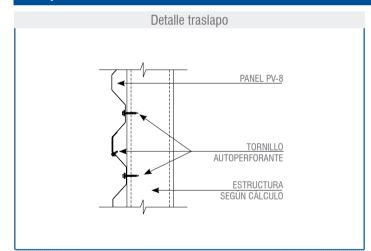



Tabla de Cargas											
		Cargas Admisibles (kg/m²)									
		Distancias entre costaneras (mm)									
Espesor mm	50	60	70	80	90	100	110	120	130		
0,4	392	272	200	152	100	96	72	52	44		

- Para el cálculo de los valores de la tabla, se supuso una deformación máxima de L/200.
- Se consideró acero A37-24.
- Se consideró viga simplemente apoyada.
 Los momentos máximos se determinaron con inercias y modulos efectivos (según AISI 1999).

- Para las deformaciones se consideró la inercia efectiva.
 Los valores indicados en la tabla corresponden a una luz de máxima permisible para sobrecarga uniformemente distribuida calculado teóricamente.
 Esta tabla se presenta como una guía. CINTAC® no se responsabiliza del uso que se le dé. Se reserva el derecho de modificar la información sin previo aviso.




- Panel constituido por ocho trapecios rigidizantes, diseñado para su aplicación en revestimientos y cubiertas.
- Su diseño y desarrollo geométrico permite obtener un juego de sombras que aportan al aspecto estético, pudiendo ser usado en distintos tipos de obras.
- Permite combinación con paneles perforados de igual geometría.
- Se fabrica en acero Zincalum® según norma ASTM 792 Az 50 (150 gr/m²), calidad estructural Gr 37 o acero prepintado al horno por una o ambas caras.
- El largo máximo del panel está limitado por la condición de transporte y manipulación (Mín. 1,5 m Máx. 15 m), largos superiores sujetos a consulta.

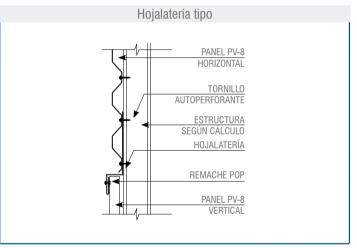
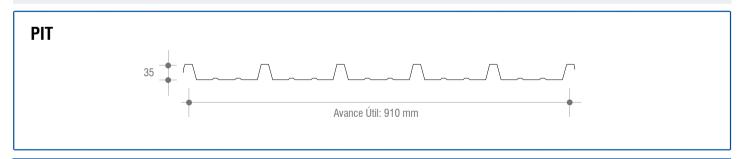
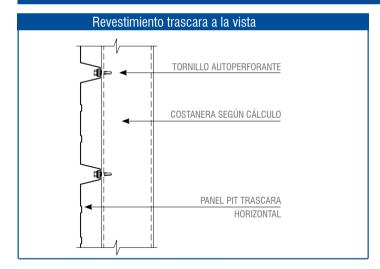


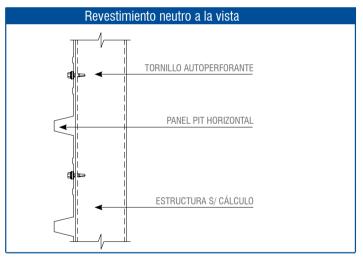
Tabla de Cargas Distancias entre costaneras (m) 1.00 1.25 1.50 1.75 2.75 3.00 3.25 3.50 Esfuerzo 0,4 Deformación Esfuerzo 0.5 Deformación Esfuerzo 0.6 Deformación Esfuerzo 0.8 Deformación Esfuerzo 0,4 Deformación Esfuerzo 0,5 Deformación Esfuerzo 0,6 Deformación Esfuerzo 0.8 Deformación Esfuerzo 0.4 Deformación Esfuerzo 0,5 Deformación Esfuerzo 0.6 Deformación Esfuerzo 8,0 Deformación

- i) Se considera un acero de calidad ASTM A792 Gr.37 (Fy = 2600 kg/cm²). ii)Se considera un módulo de Elasticidad, E = 2070000 kg/cm².
- iii) Se considera una deformación admisible igual a L/200.
- iv)"-" Carga admisible menor a 30 kg/m2.
- Los valores indicados en la tabla corresponden a una luz de máxima permisible para sobrecarga uniformemente distribuida calculado teóricamente.
 Esta tabla se presenta como una guía. CINTAC® no se responsabiliza del uso que se le dé. Se reserva el derecho de modificar la información sin previo aviso.



- Panel arquitectónico cuya geometría consta de seis trapecios, lo que lo hace apto para su instalación normal o trascara, logrando una gran terminación.
- Permite combinación con paneles perforados y traslúcidos de igual geometría.
- Se fabrica en acero Zincalum® según norma ASTM 792 Az 50, calidad estructural Gr 37 o acero prepintado por una o ambas caras.
- El largo máximo del panel está limitado por la condición de transporte y manipulación (Mín. 1,5 m Máx. 15 m), largos superiores sujetos a consulta.

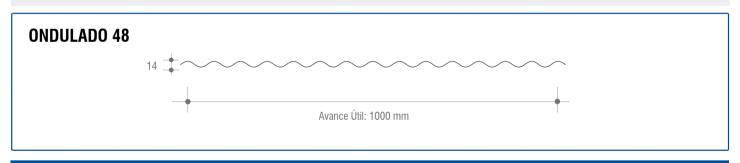


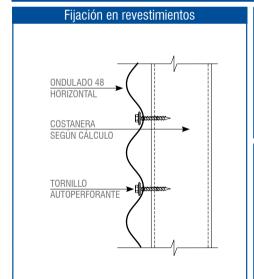

Tabla de Cargas

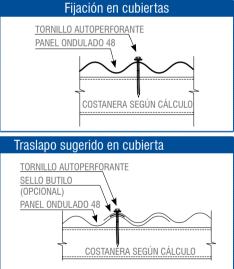
			Cargas Admisibles (kg/m²)											
	Espesor mm		Distancias entre costaneras (m)											
			1.00	1.25	1.50	1.75	2.00	2.25	2.50	2.75	3.00	3.25	3.50	
	0,4	Esfuerzo	279	177	121	88	66	51	41	33	-	-	-	
	0,7	Deformación	578	294	168	104	68	46	33	-	-	-	-	
	0,5	Esfuerzo	394	250	172	125	94	73	58	47	39	32	-	
	0,0	Deformación	722	367	210	130	85	58	41	-	-	-	-	
	0,6	Esfuerzo	495	315	216	157	119	92	74	60	49	41	34	
	0,0	Deformación	867	441	252	156	102	70	49	35	-	-	-	
	0,8	Esfuerzo	661	420	289	210	158	123	98	80	65	54	46	
	0,0	Deformación	1156	588	336	208	137	93	66	47	34	-	-	
	0,4	Esfuerzo	330	210	144	73	55	42	33	-	-	-	-	
	0,4	Deformación	1399	714	411	257	171	119	85	63	48	37	-	
	0,5	Esfuerzo	413	262	138	100	75	58	46	37	30	-	-	
	0,5	Deformación	1749	893	514	322	214	149	107	79	60	46	36	
	0,6	Esfuerzo	495	315	181	131	99	77	61	49	40	33	-	
	0,0	Deformación	2099	1071	617	386	257	179	128	95	72	55	43	
	0,8	Esfuerzo	661	385	264	192	145	112	89	72	59	49	41	
	0,0	Deformación	2798	1429	823	515	343	238	171	127	96	74	57	
	0,4	Esfuerzo	414	263	128	93	70	54	43	35	-	-	-	
	0,7	Deformación	1095	558	321	201	133	92	66	48	36	-	-	
	0,5	Esfuerzo	517	329	174	126	95	74	59	48	39	33	-	
	0,0	Deformación	1369	698	402	251	166	115	83	61	46	35	-	
	0,6	Esfuerzo	621	395	228	166	125	98	78	63	52	43	36	
	0,0	Deformación	1643	838	482	301	200	138	99	73	55	42	32	
	0.8	Esfuerzo	828	483	333	242	183	143	114	93	76	64	54	
	0,0	Deformación	2190	1118	643	402	267	185	133	98	73	56	43	

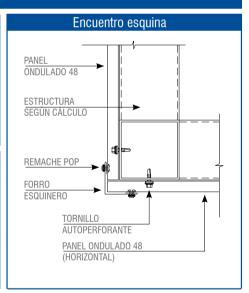
- i) Se considera un acero de calidad ASTM A792 Gr.37 (Fy = 2600 kg/cm^2) ii) Se considera un módulo de Elasticidad, E = 2070000 kg/cm².
- iii) Se considera una deformación admisible igual a L/200.
- iv)"-" Carga admisible menor a 30 kg/m².
- Los valores indicados en la tabla corresponden a una luz de máxima permisible para sobrecarga uniformemente distribuida calculado teóricamente.

 Esta tabla se presenta como una guía. CINTAC® no se responsabiliza del uso que se le dé. Se reserva el derecho de modificar la información sin previo aviso.




- Panel ondulado regular de bajo relieve, de gran rendimiento y estética.
- Permite combinación con paneles perforados de igual geometría.
- Se fabrica en acero Zincalum® según norma ASTM 792 Az 50 (150 gr/m²), calidad estructural Gr 37 o acero prepintado en una o ambas caras.
- El largo máximo del panel está limitado por la condición de transporte y manipulación (Mín. 2,0 m Máx. 15 m), largos superiores sujetos a consulta.



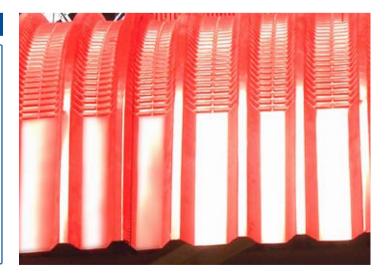

Características Técnicas 0,4 **Cubiertas** Terminación 15% Iluvias - Recto 0,5 Revestimientos moderadas Perforado 0,6 Horizontal 20% Iluvias intensas 0,8 Vertical

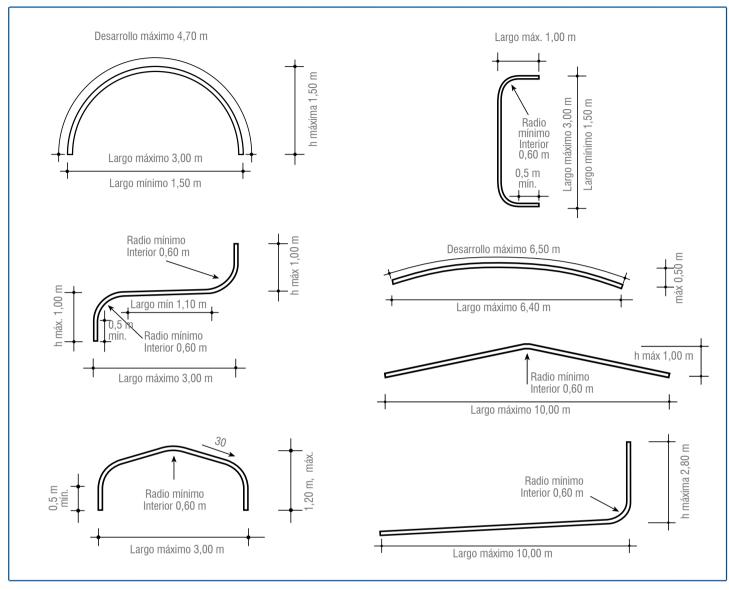
	_		Distancias entre costaneras (m)									
			1.00	1.25	1.50	1.75	2.00	2.25	2.50			
	0.5	Sobrecarga	93	46	-	-	-	-	-			
	0,0	Succión viento	103	55	34	-	-	-	-			
	0,6	Sobrecarga	116	56	30	-	-	-	-			
	0,0	Succión viento	127	68	41	28	-	-	-			
	0,8	Sobrecarga	158	77	41	-	-	-	-			
	0,0	Succión viento	173	92	56	38	28	-	-			
	0.5	Sobrecarga	204	116	65	39	-	-	-			
	0,0	Succión viento	218	125	75	49	34	-	-			
	0.6	Sobrecarga	249	144	81	49	31	-	-			
	0,0	Succión viento	267	155	92	60	42	31	-			
	0,8	Sobrecarga	335	196	110	67	42	-	-			
	0,0	Succión viento	359	211	125	82	57	42	33			
	0.5	Sobrecarga	180	90	50	30	-	-	-			
	0,0	Succión viento	190	99	59	39	28	-	-			
	0,6	Sobrecarga	223	111	62	37	-	-	-			
444	0,0	Succión viento	234	123	73	48	34	-	-			
	0,8	Sobrecarga	304	152	85	51	32	-	-			
	0,0	Succión viento	319	167	100	66	46	35	-			

- Los valores tabulados se han determinado en base al Manual de Diseño del American Iron and Steel Institute (AISI, 1986).
- · Las sobrecargas admisibles son las mínimas obtenidas por flexión y deflexión, considerando carga uniformemente distribuida en cada tramo.
- No se consideró carga puntual, por lo que se deberá utilizar elementos secundarios para repartir estas cargas.
- Se consideró una deformación máxima admisible por sobrecarga de L/200.
- Tensión de Fluencia del acero Fy=2600 Kg/cm².
- La capacidad por succión de viento puede ser incrementada en un 33%. Deberá verificarse la resistencia de los conectores.
- Los valores indicados en la tabla corresponden a una luz de máxima permisible para sobrecarga uniformemente distribuida calculado teóricamente.
- Esta tabla se presenta como una guía. CINTAC® no se responsabiliza del uso que se le dé. Se reserva el derecho de modificar la información sin previo aviso.

La aplicación de curvas y contracurvas, disponible para la línea de paneles Instapanel CINTAC®, resalta sus proyectos con nuevas y atractivas formas.

Aplicable a:

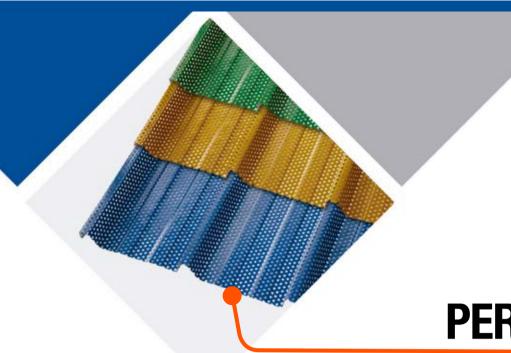

Curvas y Contracurvas


- PV-4
- PV-6
- PV-8
- Pit

El largo mínimo del panel es de 1,5 m. y el máximo 12,0 m. Para largos superiores consulte a CINTAC®.

Usos

- Cubiertas
- Revestimientos
- Hombro Curvo



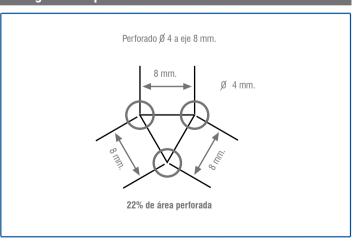
• Los dibujos grafican la condición máxima de longitud para un solo panel. Mayores desarrollos se obtienen adicionando paneles, previa consulta a CINTAC®. Largo mínimo del panel a curvar y/o contracurvar es de 1,5 m y en 0,5 mm espesor de acero.

PANELES PERFORADOS

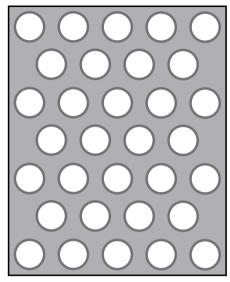
La aplicación de perforaciones, en la línea de paneles Instapanel CINTAC®, entrega gran atractivo visual, tanto en revestimientos interiores como exteriores, resultando obras con diseño único y estilo propio.

Aplicable a:

- PV-4
- PV-6
- Ondulado 48
- PV-8
- A2


El largo mínimo de los paneles es de 1,5 m y máximo 15,0 m para largos superiores, consulte a CINTAC®.

Usos


- Revestimientos

 - DiagonalHorizontal
 - Vertical
- Cielo falso
- Celosías
- Soluciones acústicas
- Control pasivo de la luz solar
- Revestimientos traslúcidos

Diagrama de perforaciones

Perforación estándar

Diámetro de perforación 4 mm.

CUBIERTAS ANTICONDENSANTES

La manera más eficiente de tratar el goteo por CONDENSACIÓN en cubiertas y revestimientos.

CON SISTEMA

Gran capacidad de absorción, hasta 1 lt/m² de agua.

Áreas de uso

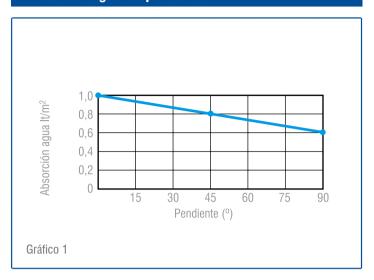
- Bodegas
- Proyectos industriales
- Hangares
- Centros de distribución
- Estacionamientos y servicentros
- Garajes
- Criaderos de animales
- Instalaciones deportivas

Aplicabilidad

Pedidos Especiales

- PV-6
- KR-18
- KR-24

Curvas

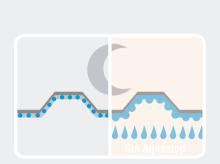

Aquastop es una membrana adherida en la línea de producción de las cubiertas y revestimientos, que evita el goteo al interior del recinto producido por la condensación absorbe hasta 1 litro de agua por metro cuadrado, brindando protección y limpieza a sus productos y equipos. Se logran cubiertas y revestimientos livianos, limpios y de simple instalación al no requerir mano de obra especializada.

Además de sus propiedades de absorción de agua, Aquastop brinda múltiples ventajas y aplicaciones:

- Aumenta la resistencia ante la corrosión protegiendo el panel.
- No se quiebra ni se degrada.
- · Incombustible.
- Mejora la absorción acústica y reduce el ruido de la lluvia.
- Su adherencia aumenta con el tiempo.
- · No genera hongos.

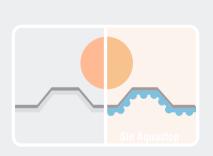
La capacidad de absorción de agua está relacionada a la pendiente de la cubierta. Así, con una pendiente de 0º la membrana absorbe hasta 1 lt/m² de agua. (Ver gráfico 1)

Absorción agua v/s pendiente


¿Cómo funciona el sistema Aquastop?

El aire tiene la capacidad de retener una cantidad de vapor de agua bajo ciertas características de temperatura y presión. Cuando estas condiciones alcanzan el punto de rocío, el vapor de agua se condensa en la cara inferior de las cubiertas metálicas, generando gotas de agua y humedeciendo el contenido del recinto.

Al atardecer Sin Aquastop


La temperatura exterior de la nave industrial desciende, disminuyendo la temperatura de la cubierta, generándose condiciones para la condensación.

Por la noche

Se alcanza la temperatura de rocío y el aire interior que entra en contacto con la placa comienza a saturarse produciéndose la condensación, las gotas de agua son absorbidas por la membrana reteniéndolas en sus cavidades, evitando así los molestos efectos del goteo.

Por la mañana

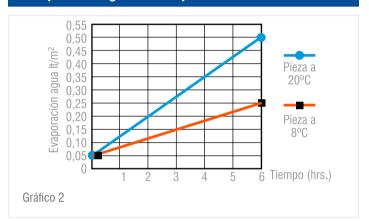
Al amanecer, la temperatura de la cubierta comienza a aumentar y la humedad atrapada empieza a evaporarse de vuelta al aire, la cual gracias a una correcta ventilación disminuye hasta quedar la membrana libre de humedad.

Propiedades de la men	nbrana					
Peso	110 g/m ²					
Espesor	1+- 0,1 mm					
Combustibilidad	A2-s1, d0 (*1). Norma EN 13501-1					
Fuerza adhesión pegamento	10 N/25mm (*2). Norma FTM 1 180°					
Resistencia al desgarro después del envejecimiento	Aumenta la resistencia					
Absorción acústica	Frecuencia / coeficiente absorción acústica Alpha.					
	125 Hz / 0,02					
	500Hz / 0,04					
	1000 Hz / 0,04					
	2000 / 0,12					
	4000 Hz / 0,42					
	Norma EN ISO 20354					
	Coeficiente Absorción NRC: 0,055					
Reducción ruido lluvia	2 dB. Norma ISO 140-18					
Conductividad térmica (λ)	0,038 (*3) W/mK. Norma DIN 52612					
Resistencia a las bacterias	No hay recimiento visible de hongos bajo microscopio 50x. Norma DIN EN 14119:2003-12					

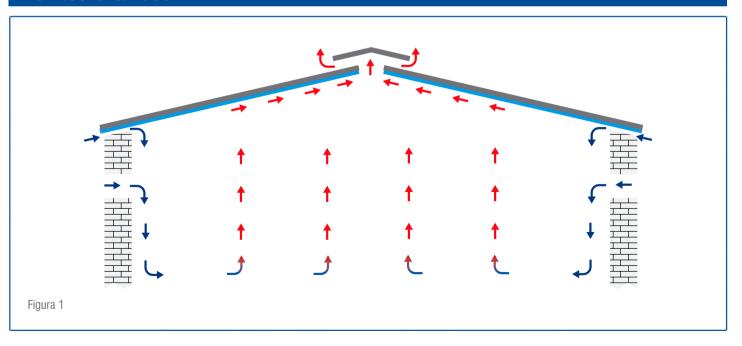
- (*1) A2: No combustible. Sin contribución al fuego, s1: Poca a nula generación de humo, d0: No se producen gotas / partículas.
- (*²) N/25mm, 25 mm corresponde al ancho de la muestra probada en ensayo.
- (*3) Membrana seca.

Evaporación

La membrana posee la capilaridad necesaria para tener la capacidad de absorber agua como también de liberarla al ambiente cuando las condiciones térmicas han cambiado.

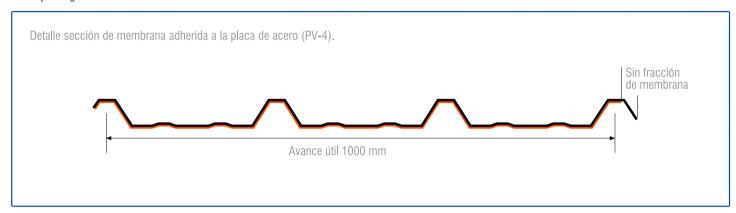

El proceso de evaporación de la membrana se fortalece notablemente con buenas condiciones de ventilación.

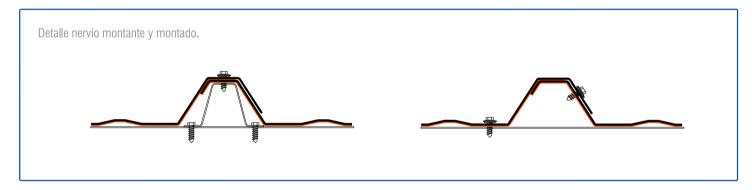
En el artículo 4.14.10 de la Ordenanza General de Urbanismo y Construcciones, se especifica la renovación de aire mínima requerida.


Se recomienda una ventilación en cumbrera para generar una correcta circulación de aire. (Ver figura 1)

En el gráfico 2 se muestra que si un recinto está a una temperatura de 8° C se liberan 0,25 lt/m2 de agua en 6 horas. De igual forma, a 20° C se liberan 0,50 lt/m2 de agua en 6 horas.

Evaporación agua v/s tiempo


Ventilación en cumbrera



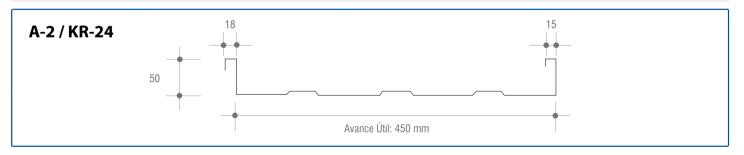
Instalación

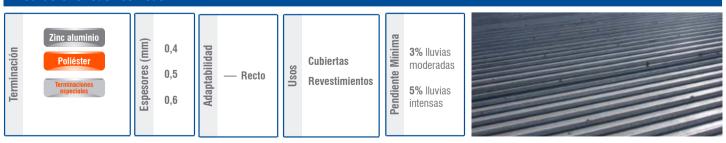
Las cubiertas con sistema Aquastop se instalan de la misma manera que una cubierta tradicional. Para evitar la penetración de agua desde el exterior por el fenómeno de la capilaridad, se requiere sellar la membrana solo en el traslape transversal. Para el traslape longitudinal, el trapecio montante viene sin una fracción de la membrana lo que permite su instalación directa.

Traslape longitudinal

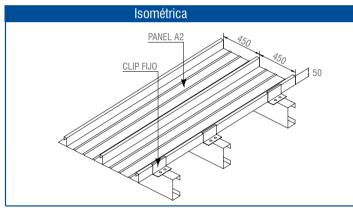
Traslape transversal

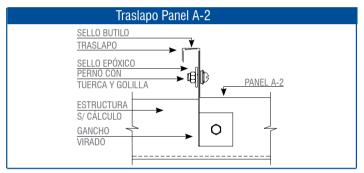
La membrana debe ser sellada previo a la instalación. Quemar con pistola de calor al menos 5 cm de la membrana para pendientes mayores al 10% y 10 cm para pendientes inferiores al 10%, retirando todo rastro de material que quedase adherido.

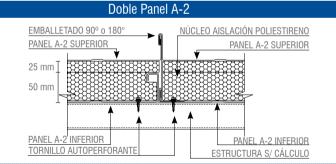




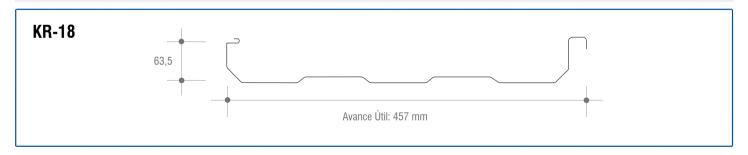
- Panel constituido por una superficie plana con frisos y nervios rigidizantes, que permiten su fijación con tornillos o emballetado.
- La fijación emballetada permite vínculo estructural a las costaneras, sin perforar el plano de escurrimiento de las aguas, logrando una cubierta absolutamente estanca.
- Para obras de baja pendiente que requieran una solución aislada, se utiliza un panel armado en terreno con núcleo aislante (poliestireno, lana de roca, lana mineral, lana vidrio, entre otras).
- Fabricación en Zincalum® según norma ASTM A-792-99 AZ 50, calidad estructural Gr 37.
- El largo máximo del panel está limitado por la condición de transporte y manipulación (Mín. 2,0 m Máx.14,0 m) para largos superiores el panel se denomina KR-24 y se fabrica en obra.


- El panel de espesor 0,4 mm se recomienda sólo si éste se instala sobre entablado o a una distancia entre costaneras menor a 1m.
- Terminaciones de pintura, consultar catálogo de colores Instapanel CINTAC®.

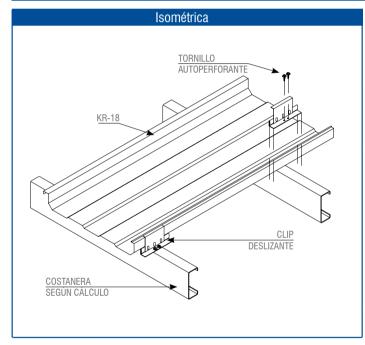

Tabla de Cargas

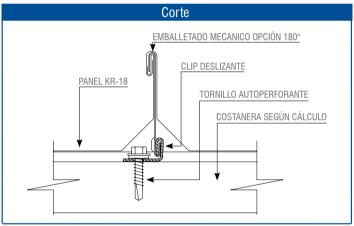

	Cargas Admisibles (kg/											
	_		Distancias entre costaneras (m)									
Condición de apoyo			1.00	1.25	1.50	1.75	2.00	2.25	2.50	2,75	3,00	
	0,5	Sobrecarga	373	237	163	118	89	70	55	45	37	
	0,0	Succión viento	272	176	124	92	72	53	40	31	-	
	0,6	Sobrecarga	507	322	222	161	122	95	76	62	50	
		Succión viento	365	236	166	123	96	69	52	41	33	
	0,5	Sobrecarga	261	165	113	82	62	48	38	30	-	
	0,0	Succión viento	383	247	173	128	99	80	66	55	47	
	0,6	Sobrecarga	353	224	153	111	84	65	51	41	34	
	0,0	Succión viento	519	334	234	174	134	107	88	74	63	
	0,5	Sobrecarga	328	208	143	104	78	61	48	39	32	
	0,0	Succión viento	421	272	190	141	109	87	71	54	43	
	0,6	Sobrecarga	443	281	193	140	106	82	66	53	44	
	0,0	Succión viento	567	365	255	189	146	117	93	71	56	

- Los valores tabulados se han determinado en base al Manual de Diseño del American Iron and Steel Institute (AISI, 1986).
- · Las sobrecargas admisibles son las mínimas obtenidas por flexión y deflexión, considerando carga uniformemente distribuida en cada tramo.
- No se consideró carga puntual, por lo que se deberá utilizar elementos secundarios para repartir estas cargas.
- Se consideró una deformación máxima admisible por sobrecarga de L/200.
- Tensión de Fluencia del acero Fy=2600 Kg/cm².
- La capacidad por succión de viento puede ser incrementada en un 33%. Deberá verificarse la resistencia de los conectores.
- Los valores indicados en la tabla corresponden a una luz de máxima permisible para sobrecarga uniformemente distribuida calculado teóricamente.
- Esta tabla se presenta como una guía. CINTAC® no se responsabiliza del uso que se le dé. Se reserva el derecho de modificar la información sin previo aviso.



- Panel continuo emballetable fabricado en obra. Su principal uso es en grandes superficies de baja pendiente, eliminando traslapos y generando una cubierta estanca.
- La fijación del panel a la estructura, es por medio de clip fijos o deslizantes, que se emballetan a 90° o 180°.
- El uso del clip deslizante permite absorber dilataciones o contracciones por efecto térmico.
- Se fabrica en acero Zincalum® según norma ASTM A-792, calidad estructural Gr 37 o acero prepintado por una o ambas caras.

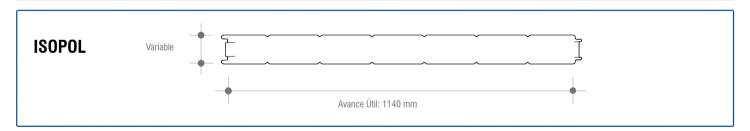




• Para las terminaciones de pintura, consultar catálogo de colores Instapanel CINTAC®

Tabla de Cargas Cargas Admisibles (kg/m²) Distancias entre costaneras (m) 1.00 1.10 1.20 1.30 1.40 1.60 1.70 1.75 Sobrecarga 0,5 Succión viento Sobrecarga 0.6 Succión viento Sobrecarga 0,5 385 Succión viento Sobrecarga 0,6 Succión viento 370 519 214 Sobrecarga 0,5 Succión viento Sobrecarga 0,6 Succión viento

- Las sobrecargas admisibles corresponden a las mínimas obtenidas por flexión y deflexión.
- No se consideró carga puntual, por lo cual deberá colocarse tablones para repartir estas cargas.
- •Se consideró una deformación máxima admisible por sobrecarga de L/200.
- •La capacidad por succión de viento puede ser incrementada en un 33%. Deberá verificarse la resistencia de los conectores.
- Tensión de fluencia del acero Fy=2600 Kg/cm².
- · Los valores indicados en la tabla corresponden a una luz de máxima permisible para sobrecarga uniformemente distribuida calculado teóricamente.
- Esta tabla se presenta como una guía. CINTAC® no se responsabiliza del uso que se le dé. Se reserva el derecho de modificar la información sin previo aviso.



- Panel constituido por dos láminas de acero, con núcleo aislante de poliestireno (POL) de alta densidad 18 20 kg/m³ (con tolerancia de ± 2 kg/m³), por lo que se obtiene una solución de revestimiento o cielo aislado en un solo producto con excelentes propiedades térmicas, siendo su principal uso en cámaras frigoríficas.
- La capacidad estructural del panel permite ser utilizado como sistema constructivo autosoportante en edificios de uno o más pisos, como oficinas, campamentos, casetas, entre otros.
- Su superficie homogénea permite una rápida y fácil limpieza.
- El largo máximo está limitado por la condición de transporte y manipulación (Mín. 2,50 m Máx.15,0 m (excepto ISOPOL 200 y 250 mm de máx. 13,0 m), largos superiores sujetos a consulta.
- El panel Isopol, en combinación con yeso cartón puede lograr resistencia al fuego F15.

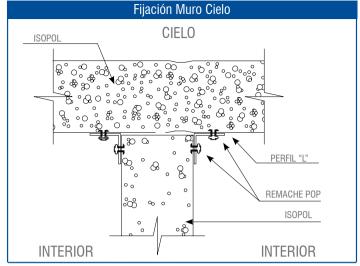
- Terminaciones de pintura, consultar catálogo de colores Instapanel CINTAC®.
- · Consultar por solución constructiva contra fuego.

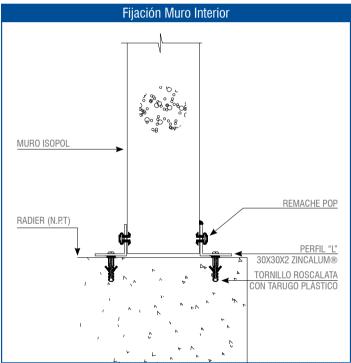
Tabla de Cargas Distancias entre costaneras (m) 1.00 1.25 1.50 1.75 2.00 2.25 2.50 3.00 3.25 3.50 3.75 4.00 4.25 4.50 4.75 5.00 Esfuerzo Deformación Esfuerzo 272 Deformación Esfuerzo Deformación

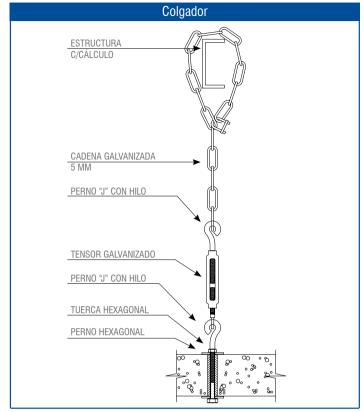
• Los valores indicados en la tabla corresponden a la luz máxima permisible para una sobrecarga uniformemente distribuida, calculados teóricamente.

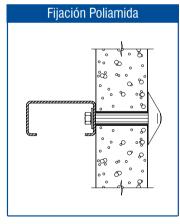
i) Se considera un acero de calidad ASTM A792 Gr.37 (Fy $= 2600 \text{ kg/cm}^2$). ii) Se considera un módulo de Elasticidad, E $= 2070000 \text{ kg/cm}^2$.

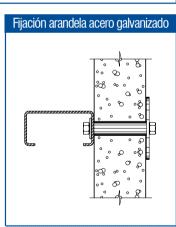
iii) Se considera una deformación admisible igual a L/200.

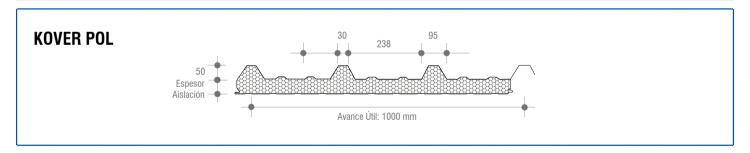

iv) "-" Carga admisible menor a 30 kg/m2.


y) Aislación: Poliestireno (20 kg/m³).
 Módulo de elasticidad: 42.7 (kg/cm²).
 Módulo de corte: 19.4 (kg/cm²).
 Resistencia al corte: 1.1 (kg/cm²).
 Resistencia a la compresión: 1 (kg/cm²).








	Propiedades Térmicas										
			Elemento	s Horizontales (Flujo <i>F</i>	Ascendente)	Elemento					
				Transmitancia Térmica			Transmita	ncia Térmica			
Espesor (mm)	Peso (kg/m²)	Largo Máximo (m)	Resistencia Térmica ⁽¹⁾ (m² K/W)	W/m²K	Kcal/m ² °C	Resistencia Térmica (m² K/W)	W/m²K	Kcal/m ² °C			
50	9,1	8	1,442	0,693	0,597	1,472	0,679	0,584			
75	9,6	12	2,093	0,478	0,411	2,123	0,471	0,405			
100	10,1	14	2,744	0,364	0,314	2,774	0,360	0,310			
120	10,5	14	3,265	0,306	0,264	3,295	0,303	0,261			
150	11,1	14	4,046	0,247	0,213	4,076	0,245	0,211			
200	12,1	14	5,348	0,187	0,161	5,378	0,186	0,160			
250	13,1	14	6,650	0,150	0,129	6,680	0,150	0,129			

⁽¹⁾ Según NCh 853. Of 91 para densidad de poliestireno 20 Kg/m 3 y temperatura 20 $^{\rm o}{\rm C}.$

KOVER POL

- Panel continuo constituido por dos láminas de acero, con núcleo aislante de poliestireno expandido de densidad 18-20 kg/m³ (con tolerancias de ± 2 kg/m³), por lo que se obtiene una solución de cubierta aislación cielo, en un solo producto.
- El compromiso estructural entre el poliestireno y las láminas de acero, le confieren alta resistencia mecánica y aislación térmica en una solución de bajo peso.
- Kover Pol, en combinación con yeso cartón puede lograr resistencia al fuego F15 o F30.
- El largo máximo del panel está limitado por la condición de transporte y manipulación (Mín. 2,5 m Máx. 15 m, excepto Koverpol 200/250 de máx 13,0 m), largos superiores sujetos a consulta.
- Panel disponible en el Listado Oficial de Soluciones Constructivas para Acondicionamiento Térmico del Ministerio de Vivienda y Urbanismo.

Características Técnicas

Acero 0,5/0,4

Aislación 50,75,100 150, 200

Adaptabilidad otsess Cubiertas

Revestimientos

Horizontal

Vertical

Pendiente Mínima S.5

- Para otros espesores, consulte factibilidad a CINTAC®.
- Consultar por solución constructiva contra fuego.

Tabla de Cargas Distancias entre costaneras (m) 1.00 1.25 1.50 1.75 2.00 2.25 2.50 3.00 3.50 3.75 4.00 4.25 4.50 4.75 5.00 Esfuerzo Deformación Esfuerzo Deformación

- · Los valores indicados en la tabla corresponden a la luz máxima permisible para una sobrecarga uniformemente distribuida, calculados teóricamente.
- i) Se considera un acero de calidad ASTM A792 Gr.37 (Fy = 2600 kg/cm²). ii) Se considera un módulo de Elasticidad, E = 2070000 kg/cm².
- iii) Se considera una deformación admisible igual a L/200.
- iv) "-" Carga admisible menor a 30 kg/m²

v) Aislación: Poliestireno (20 kg/m³).

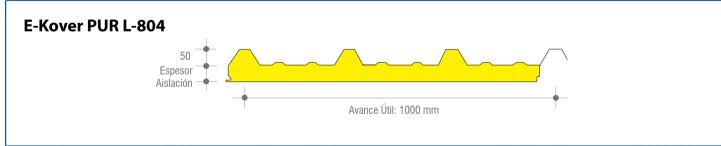
Módulo de elasticidad: 42.7 (kg/cm²)

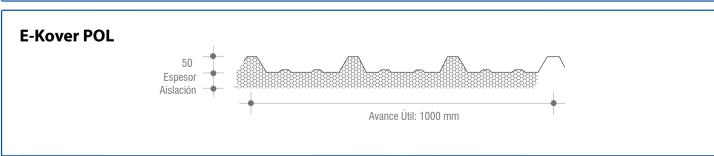
Módulo de corte: 19.4 (kg/cm²).
Resistencia al corte: 1.1 (kg/cm²)

Resistencia a la compresión: 1 (kg/cm²).

• Esta tabla es sólo una guía, CINTAC® no se responsabiliza del uso que se le dé. Se reserva el derecho de modificar la información sin previo aviso. Para otros detalles consultar a CINTAC®

• Tabla desarrollada para paneles en base a esquemas estándar de acero, 0,5 superior y 0,4 inferior.


Propiedades Térmicas


			Paneles de Cubierta	(Flujo Ascendente)	Paneles de Revestimi	ento (Flujo Horizontal)
Altura del Valle (mm)	Peso (kg/m²)	Largo Máximo (m)	Resistencia Térmica (m² K/W)	Transmitancia (W/m²K)	Resistencia Térmica (m² K/W)	Transmitancia Térmica (W/m²K)
50	8,57	8,0	1,601	0,625	1,632	0,613
75	9,07	12,0	2,271	0,,440	2,302	0,434
100	9,57	14,0	2,935	0,341	2,964	0,337
150	10,57	14,0	4,250	0,235	4,280	0,234
200	11,57	14,0	5,560	0,180	5,590	0,179

- Solución aislada de cubierta y revestimiento, que se compone de una plancha trapezoidal de acero en la cara superior, de gran avance útil y una lámina de protección en la cara inferior, ya sea foil de aluminio o polipropileno blanco. El diseño busca optimizar tanto la estructura del acero, como la excelente capacidad de aislación del Poliuretano o Poliestireno, según el panel.
- Los paneles son rápidos y fáciles de instalar, fijándose a la estructura metálica con tornillos autoperforantes en los trapecios. El traslapo lateral se realiza mediante nervio montante, lo que permite eliminar las filtraciones, se debe utilizar sello continuo de celda cerrada en la fijación de los paneles.
- Largo Mínimo 2,5 m / Largo Máximo 12 m.

Características Técnicas E-Kover PUR L-804

Aceros 0,4/ foil (mm) 0,5/ foil Espesores Aislación 30 50 80

Adaptabilidad - Recto **Cubiertas** Revestimientos Horizontal Vertical

Pendiente Mínima **5**%

Propiedades Térmicas

				s de Cubierta Ascendente)		de Revestimiento o Horizontal)
(mm)	(Kg/m²)	(m)	(m²K/W)	(W/m²K)	(m ² K/W)	(W/m²K)
30	6,0 6.9	12,0	1,512	0,661	1,544	0,648
50 80	7,9	12,0 12,0	2,353 3,402	0,425 0,294	2,384 3,370	0,419 0,297

Características Técnicas E-Kover POL

Espesores (mm)

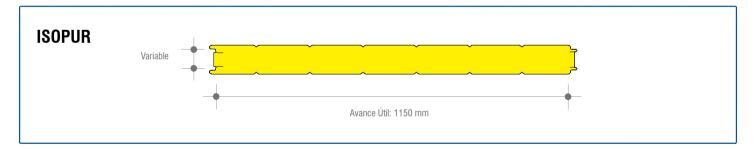
Aceros 0,4/ foil 0,5/ foil Aislación 50 75 100

150 200 Adaptabilidad - Recto

Cubiertas Revestimientos Usos Horizontal

Vertical

Pendiente Mínima 5%


				Propiedade	s Térmicas	
				s de Cubierta Ascendente)		de Revestimiento jo Horizontal)
Espesor Valle						Transmitancia
(mm)	(Kg/m²)	(m)			(m²K/W)	(W/m²K)
50-100	5,8	8,0	1,601	0,625	1,632	0,613
75-125	6,3	12,0	2,271	0,440	2,302	0,434
100-150	6,8	14,0	2,934	0,341	2,964	0,337
150-200	7,7	14,0	4,250	0,235	4,280	0,234
200-250	8,7	14,0	5,560	0,180	5,590	0,179

Fijación en cubierta simple Tornillo Autoperforante Galv. 1 / 4"x 3 1/2" con golilla de acero galvanizado Sello Continuo Celda Cerrada y neoprene incorporado Golilla tipo K, para prevenir deformaciones Alero en la fijación, producto del sobre-torqueo. ್ಯಂ %000 Lámina de Recubrimiento Inferior Cinta de Sello Adhesivo

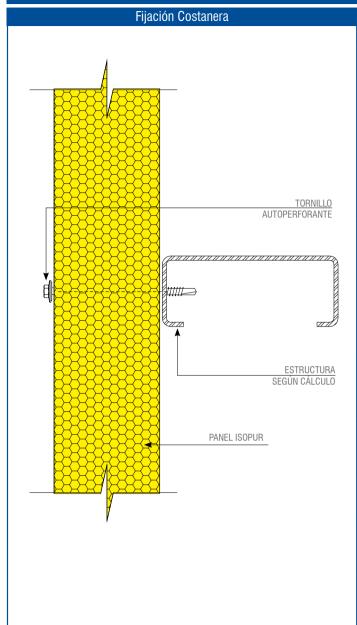
- Según NCh 853.0f 91 para poliestireno densidad 20 kg/m³ y temperatura 20°C.
- Valores basados en panel con espesores de acero 0,5 mm superior e inferior polipropileno.

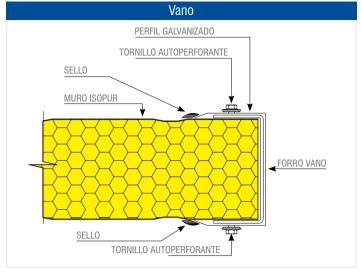
ISOPUR

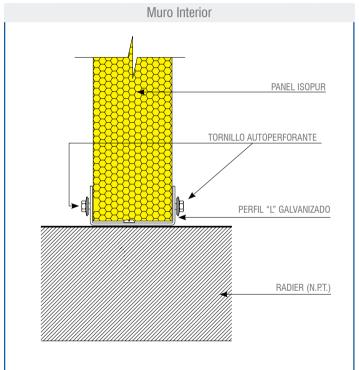
- Panel continuo constituido por dos láminas de acero, con núcleo aislante de poliuretano (PUR) o poliisocianurato (PIR) de alta densidad 38 a 40 kg./m³
 (con tolerancia ± 2), por lo que se obtiene una solución de revestimiento o cielo aislado en un solo producto, ideal para proyectos que necesitan de un ambiente con temperatura controlada.
- El compromiso estructural entre el poliuretano rígido y las láminas de acero, le confiere alta resistencia mecánica y aislación térmica en una solución de bajo peso.
- El largo máximo está limitado por la condición de transporte y manipulación (Mín. 3 m Máx. 12 m), largos superiores sujetos a consulta.
- Producto disponible en el Listado Oficial de Soluciones Constructivas para Acondicionamiento Térmico del Ministerio de Vivienda y Urbanismo.

Características Técnicas

- \bullet Terminaciones de pintura, consultar catálogo de colores Instapanel CINTAC $\!\!^\circ$.
- Para uso como revestimiento Horizontal, consultar a CINTAC®.




Tabla de Cargas Distancias entre costaneras (m) 1.00 1.25 1.50 1.75 2.00 2.25 3.50 3.75 4.00 4.25 4.50 4.75 5.00 Esfuerzo Deformación $\overline{\mathbf{A}}$ Esfuerzo Deformación Esfuerzo Deformación


- Los valores indicados en la tabla corresponden a la luz máxima permisible para una sobrecarga uniformemente distribuida, calculados teóricamente
- i) Se considera un acero de calidad ASTM A792 Gr.37 (Fy = 2600 kg/cm²).
- ii) Se considera un módulo de Elasticidad, $E=2070000 \text{ kg/cm}^2$.
- iii) Se considera una deformación admisible igual a L/200. iv) ''-'' Carga admisible menor a 30 kg/m².
- v) Aislación: Poliuretano (40 kg/m³).
 - Módulo de elasticidad: 42.7 (kg/cm²)
 - Módulo de corte: 19.4 (kg/cm²).
 Resistencia al corte: 1.1 (kg/cm²)
 - Resistencia a la compresión: 1 (kg/cm²).
- Esta tabla es sólo una guía, CINTAC® no se responsabiliza del uso que se le dé. Se reserva el derecho de modificar la información sin previo aviso. Para otros detalles consultar a CINTAC®

Esquemas de Instalación

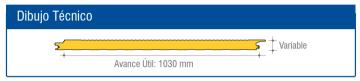
	Propiedades Térmicas														
				Transmitan	cia Térmica		Transmita	ncia Térmica							
Espesor (mm)	Peso (kg/m²)	Largo Máximo (m)	Resistencia Térmica ⁽¹⁾ (m ² K/W)	W/m²K	Kcal/m ² °C	Resistencia Térmica (m² K/W)	W/m²K	Kcal/m ² °C							
50	6,4	10	2,140	0,467	0,402	2,170	0,461	0,396							
80	11,4	12	3,340	0,299	0,258	3,370	0,297	0,255							
100	12,2	12	4,140	0,242	0,208	4,170	0,240	0,206							
120	13,0	12	4,940	0,202	0,174	4,970	0,201	0,173							
150	14,2	12	6,140	0,163	0,140	6,170	0,162	0,139							

- Revestimiento de uso horizontal y vertical.
- Sistema de unión con fijación oculta.
- Núcleo con gran capacidad de aislación térmica.
- Panel de gran rigidez y poco peso.
- Disponible en 3 diferentes diseños de frisos.
- El largo máximo del panel está limitado por la condicion del transporte y manipulación (Mín.3 m. Máx. 14 m).

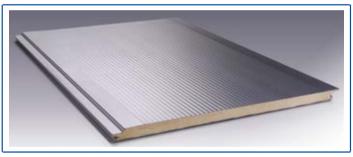
Acero (IIII) 9,5/0,5 0,6/0,6 Aislación 50 75 100

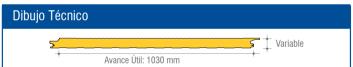
Adaptabilidad
— Recto

Revestimientos
Horizontal
Vertical
Cielo Falso

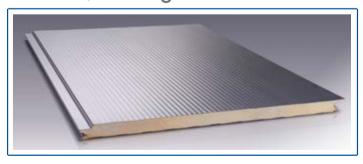

- Para no afectar las propiedades del núcleo por solicitaciones térmicas en paneles exteriores, se debe utilizar colores claros.
- Para otros espesores de acero, consultar a CINTAC®.

Isowall / Friso




Cara y trascara de igual diseño frisado.

Isowall / Canto Recto



Cara triangular con extremos lisos. Trascara diseño frisado.

Isowal®/ Triangular Continuo

Cara triangular de extremo a extremo. Trascara diseño frisado.

Descripción

Dentro de la línea de paneles aislados, CINTAC® pone a su disposición el nuevo panel continuo ISOWALL®, compuesto por dos láminas de acero Zincalum® y/o prepintadas, con un núcleo aislante de poliuretano.

Diseño y funcionalidad

 El panel ISOWALL® presenta exteriormente un compacto perfil triangular que le confiere una apariencia de gran innovación, generando un "juego estético" de luz y sombra que resalta los colores de la línea Instapanel de CINTAC®.

Para uso horizontal:

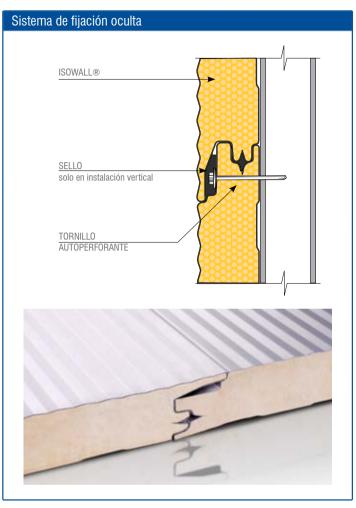
Además, al no visualizar costaneras en el interior de los edificios, se consiguen espacios más limpios, que logran un diseño de óptimo nivel funcional y estético.

Fijación "invisible"

 Su fijación no está a la vista, lo que permite trabajar paños limpios y protegidos de la suciedad ambiental, característica que facilita la mantención de los revestimientos.

Ahorro de materiales

 El panel ISOWALL® dispuesto horizontalmente permite eventualmente, prescindir de una estructura secundaria, derivando en un significativo ahorro de material.


Propiedades térmicas

 El panel ISOWALL® puede fabricarse con aislación PUR (Poliuretano) o PIR (Poli-isocianurato) de alta densidad (40 kg/m3 +/- 2). Ambos materiales aislantes confieren muy buenas propiedades térmicas a los edificios.

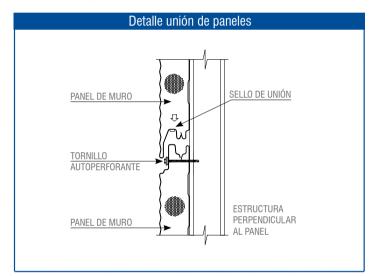
Distanciamiento entre apoyos

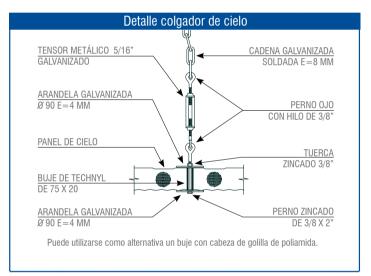
 El formato compacto del panel ISOWALL®, y en particular el diseño de sus chapas exteriores e interiores, permiten responder de manera óptima a las necesidades de revestimientos horizontales, alcanzando distanciamientos entre apoyo de hasta 4 m con ISOWALL® de 50 mm y en aceros de 0,5 mm para tabiques interiores.

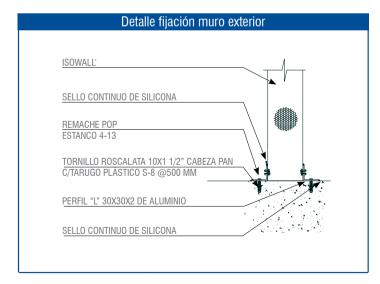
Tabla de Cargas

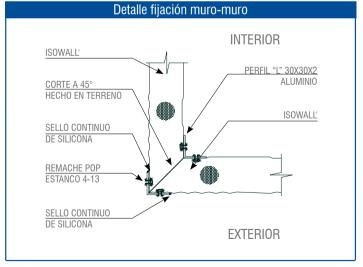
										Cargas A	dmisible	s (kg/m²)							
Condición									Dis	tancias e	ntre costa	ıneras (m	1)						
de apoyo			1.00	1.25	1.50	1.75	2.00	2.25	2.50	2.75	3.00	3.25	3.50	3.75	4.00	4.25	4.50	4.75	5.00
	50	Esfuerzo	599	477	396	338	264	209	169	139	117	100	86	75	66	58	52	46	42
	30	Deformación	300	229	180	145	119	98	81	68	57	47	40	33	-	-	-	-	-
	75	Esfuerzo	598	476	395	337	293	259	232	210	182	155	134	116	102	90	81	72	65
	10	Deformación	496	385	309	254	212	179	152	131	113	97	84	73	64	56	48	42	37
	50	Esfuerzo	233	184	152	128	111	97	86	78	70	64	59	54	50	46	43	40	38
	00	Deformación	302	233	186	152	127	108	92	79	69	60	52	46	40	35	31	-	-
	75	Esfuerzo	232	183	151	127	110	96	85	77	69	63	58	53	49	45	42	39	37
	7.5	Deformación	498	388	313	260	220	189	164	143	126	112	100	89	80	72	65	59	53
	50	Esfuerzo	266	211	174	147	127	112	100	90	81	74	68	63	58	54	50	47	44
	30	Deformación	304	234	188	154	129	109	93	80	69	60	52	45	39	34	30	-	-
	75	Esfuerzo	265	210	173	146	126	111	99	89	80	73	67	62	57	53	49	46	43
	7.5	Deformación	499	389	316	262	222	191	166	145	128	113	100	89	80	71	64	57	51

- Los valores indicados en la tabla corresponden a la luz máxima permisible para una sobrecarga uniformemente distribuida, calculados teóricamente.
- i) Se considera un acero de calidad ASTM A792 Gr.37 (Fy = 2600 kg/cm^2).
- ii) Se considera un módulo de Elasticidad, E = 2070000 kg/cm².
- iii) Se considera una deformación admisible igual a L/200.
- iv) "-" Carga admisible menor a 30 kg/m².

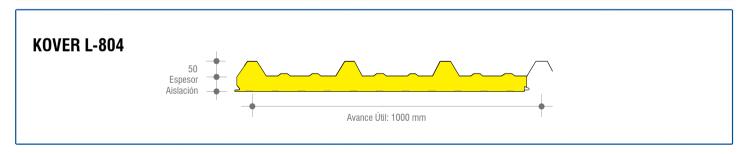

- v) Aislación: Poliuretano (40 kg/m³).


 Módulo de elasticidad: 42.7 (kg/cm²).


 Módulo de corte: 19.4 (kg/cm²).


 Resistencia al corte: 1.1 (kg/cm²).

 Resistencia a la compresión: 1 (kg/cm²).
- Tabla Correspondiente al producto Isowall Friso, para más antecedentes consulte al Departamento Técnico.
- Esta tabla es sólo una guía, CINTAC® no se responsabiliza del uso que se le dé. Se reserva el derecho de modificar la información sin previo aviso. Para otros detalles consultar a CINTAC®



- Panel continuo constituido por dos láminas de acero, con núcleo aislante de Poliuretano (PUR) o Poliisocianurato (PIR) de alta densidad 38 40 kg/m³ (con tolerancias de ± 2 kg/m³), por lo que se obtiene una solución de cubierta aislación cielo, en un solo producto.
- El compromiso estructural entre el poliuretano rígido y las láminas de acero, le confiere alta resistencia mecánica y aislación térmica en una solución de bajo peso.
- El largo del panel máximo está limitado por la condición de transporte y manipulación (Mín. 3 m Máx. 12 m), largos superiores sujetos a consulta.
- Panel disponible en el Listado Oficial de Soluciones Constructivas para Acondicionamiento Térmico del Ministerio de Vivienda y Urbanismo.

(*) Valores corresponden a espesor de acero caras superior e inferior respectivamente.

- Para otros espesores ver factibilidad con CINTAC®.
- Terminaciones de pintura, consultar catálogo de colores Instapanel CINTAC®.

Tabla de Cargas Distancias entre costaneras (m) 1.25 1.50 1.75 2.00 2.25 2.50 3.75 4.00 4.25 4.50 4.75 5.00 Esfuerzo 30-80 Deformación Esfuerzo 50-100 Deformación Esfuerzo 30-80 Deformación Esfuerzo 50-100 39 Deformación Esfuerzo 30-80

· Los valores indicados en la tabla corresponden a la luz máxima permisible para una sobrecarga uniformemente distribuida, calculados teóricamente.

Nota: i) Se considera un acero de calidad ASTM A792 Gr.37 (Fy = 2600 kg/cm²). Se considera un módulo de Elasticidad, E = 2070000 kg/cm².

Deformación

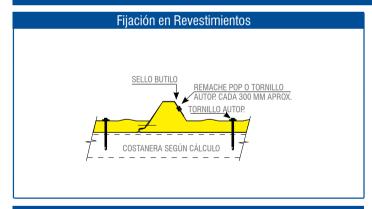
Deformación

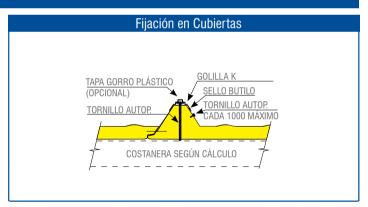
Esfuerzo

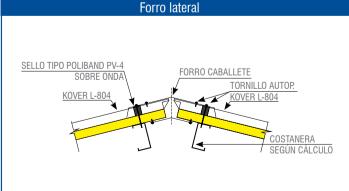
- iii) Se considera una deformación admisible igual a L/200.

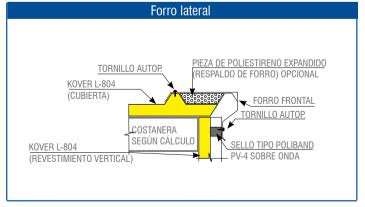
50-100

"-" Carga admisible menor a 30 kg/m2.

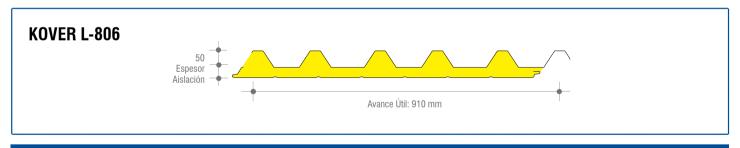

v) Aislación: Poliuretano (40 kg/m³). Módulo de elasticidad: 42.7 (kg/cm²) Módulo de corte: 19.4 (kg/cm²). Resistencia al corte: 1.1 (kg/cm²) Resistencia a la compresión: 1 (kg/cm²).


• Esta tabla es sólo una guía, CINTAC® no se responsabiliza del uso que se le dé. Se reserva el derecho de modificar la información sin previo aviso. Para otros detalles consultar a CINTAC®,


Propiedades Térmicas


			Paneles de Cubier	ta (Flujo Ascendente)	Paneles de Revestimie	ento (Flujo Horizontal)
Altura del Valle (mm)	Peso (kg/m²)	Largo Máximo (m)	Resistencia Térmica (m² K/W)	Transmitancia (W/m²K)	Resistencia Térmica (m² K/W)	Transmitancia (W/m²K)
30 50	10,2 11,3	12 12	1,512 2,353	0,661 0,425	1,544 2,384	0,648 0,419

Esquemas de Instalación



- Panel continuo constituido por dos láminas de acero, con núcleo aislante de Poliuretano (PUR) o Poliisocianurato (PIR)* de alta densidad 38 40 kg/m³ (con tolerancias de ± 2 kg/m³), por lo que se obtiene una solución de cubierta aislación cielo, en un solo producto.
- El compromiso estructural entre el poliuretano rígido y las láminas de acero, le confiere alta resistencia mecánica y aislación térmica en una solución de bajo peso.
- El largo máximo del panel está limitado por la condición de transporte y manipulación (Mín. 3 m Máx. 12 m).
- Panel disponible en el Listado Oficial de Soluciones Constructivas para Acondicionamiento Térmico del Ministerio de Vivienda y Urbanismo.

(*) Valores corresponden a espesor de acero caras superior e inferior respectivamente.

• Para otros espesores ver factibilidad con CINTAC®

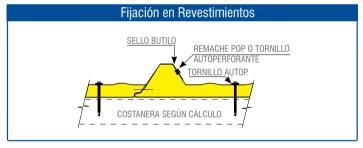
Tabla de Cargas Distancias entre costaneras (m) 1.00 1.25 1.50 1.75 2.00 3.50 3.75 4.00 4.25 4.50 4.75 5.00 Esfuerzo 30-80 Deformación Esfuerzo 50-100 34 Deformación Esfuerzo 30-80 Deformación 129 Esfuerzo 50-100 37 Deformación Esfuerzo 30-80 Deformación Esfuerzo 50-100 Deformación 4517

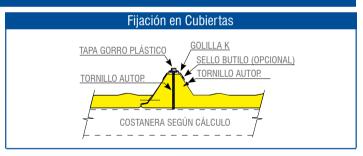
• Los valores indicados en la tabla corresponden a la luz máxima permisible para una sobrecarga uniformemente distribuida, calculados teóricamente.

i) Se considera un acero de calidad ASTM A792 Gr.37 (Fy = 2600 kg/cm²).

ii) Se considera un módulo de Elasticidad, E = 2070000 kg/cm² iii) Se considera una deformación admisible igual a L/200.

iv) ''-" Carga admisible menor a 30 kg/m2


v) Aislación: Poliuretano (40 kg/m³). Módulo de elasticidad: 42.7 (kg/cm²) Módulo de corte: 19.4 (kg/cm²) Resistencia al corte: 1.1 (kg/cm²) Resistencia a la compresión: 1 (kg/cm²).

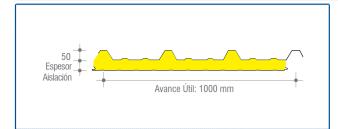

• Esta tabla es sólo una quía, CINTAC®no se responsabiliza del uso que se le dé. Se reserva el derecho de modificar la información sin previo aviso, Para otros detalles consultar a CINTAC®.

Propiedades Térmicas

			Paneles de Cubierta	(Flujo Ascendente)	Paneles de Revestimie	nto (Flujo Horizontal)
Altura del Valle (mm)	Peso (kg/m²)	Largo Máximo (m)	Resistencia Térmica (m² K/W)	Transmitancia (W/m²K)	Resistencia Térmica (m² K/W)	Transmitancia (W/m²K)
30	10,6	13,5	1,754	0,570	1,788	0,599
50	11,4	13,5	2,620	0,382	2,652	0,377

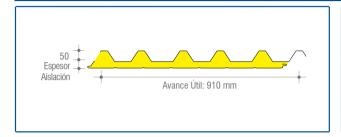
Esquemas de Instalación

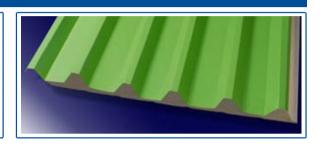
- Alternativa de fabricación en PIR (poliisocianurato) que cuenta con Certificación FM (Factory Mutual) de acuerdo a las normas 4880, 4881 y 4471 las
 cuales satisfacen las exigencias de comportamiento al fuego, la resistencia a los elementos del medio ambiente como vientos de alta velocidad y
 granizo, además de altos estándares de control de calidad y trazabilidad de cada elemento.
- Esta certificación permite bajar de forma importante la prima de seguros, al reducir al mínimo una serie de riesgos que afectan a una construcción.

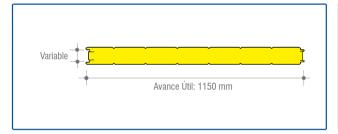

Aplicables a los productos

- Kover-804
- Isopir
- Kover L-806
 Isowall
- El largo máximo del panel está limitado por la condición de transporte y manipulación (Mín. 3,0 m Máx. 14 m).

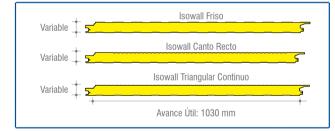
Diferencias entre paneles PIR y PUR		
Propiedades	PUR	PIR
Tipo de Celda	Rígida	Rígida, más Cristalizada
Temperatura de degradación [°C]	600	600
Temperatura máxima de exposición continua [°C]	110	150-160
Temperatura máxima de exposición temporal [°C]	140	180
Estabilidad dimensional [°C]	-29 a 90	-40 a 120
Conductividad Térmica [W/mºK] a 20°C	0.025	0.026-0.029


Kover L - 804 PIR


Aceros 0,5/ 0,5 Aislación 30 50 80

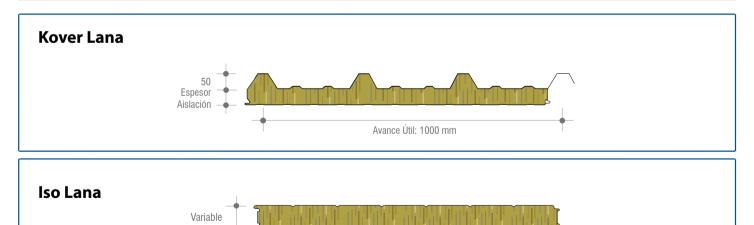

Kover L - 806 PIR

Aceros 0,5/0,5 Aislación 30 50 80



Isopir

Isowall PIR



- Paneles continuos constituidos por dos láminas de acero, con núcleo aislante de Lana de Roca de alta densidad (100 kg/m³).
- Excelente resistencia al fuego. F30 a F120. Según espesor de núcleo aislante.
- Única solución del mercado con 6 diferentes espesores de aislación.
- Amplia gama de colores y diferentes esquemas de pintura.
- Se fabrica en acero Zincalum® según norma ASTM A-792-99 AZ 50, calidad estructural Gr 37 o acero prepintado por una o ambas caras.
- El largo máximo del panel está limitado por la condición de transporte y manipulación (Mín. 2,5 m Máx. 12 m), largos superiores sujetos a consulta.*
- Uso en centros comerciales, bodegas, galpones industriales, centros de distribución, gimnasios, supermercados.
 - * El largo máximo recomendado por la condicion de transporte y manipulación para los paneles de espesor 120 y 150 mm es de 8 m.

Avance Útil: 1140 mm

KOVER LANA

Acero 0,6/0,5 Espesores (mm) Aislación 40 50 80 100 125 150

Adaptabilidad

Usos - Recto

Cubiertas Revestimientos Horizontal Vertical

Pendiente Mínima 5%

ISO LANA

Terminación

Acero Espesores (mm) 0,6/0,6 Aislación 40,50, 80,100, 125,150

Adaptabilidad

- Recto

Revestimientos Usos Vertical Cielo falso

Carga Kover Lana

								Carg	jas Admi	isibles (l	(g/m²)								
Condición	Espesor	Tipo de						Distan	cias entr	e costan	eras (m)							
de apoyo	mm	Carga	1.00	1.25	1.50	1.75	2.00	2.25	2.50	2.75	3.00	3.25	3.50	3.75	4.00	4.25	4.50	4.75	5.00
	40-90	Esfuerzo	423	338	275	218	178	149	127	109	94	83	73	65	58	52	47	43	39
		Deformación	2857	1652	1074	751	553	422	330	264	215	177	147	124	105	90	78	68	59
	50-100	Esfuerzo	423	338	282	239	198	167	144	125	109	96	85	76	68	62	56	51	47
		Deformación	2971	1746	1153	820	613	474	376	305	250	208	175	149	127	110	95	83	73
	80-130	Esfuerzo	423	338	282	242	211	188	169	154	141	130	121	113	102	93	85	78	72
	00-130	Deformación	3321	2030	1392	1026	793	633	517	430	362	308	265	229	200	175	154	136	121
	100-150	Esfuerzo	423	338	282	242	211	188	169	154	141	130	121	113	106	100	94	89	85
	100-130	Deformación	3558	2221	1552	1164	913	739	612	515	439	378	328	286	251	222	197	175	157
	105 175	Esfuerzo	423	338	282	242	211	188	169	154	141	130	121	113	106	100	94	89	85
	150-200	Deformación	3855	2460	1753	1336	1064	873	732	623	536	466	408	360	319	284	253	227	205
		Esfuerzo	423	335	282	242	211	188	169	154	141	130	121	113	106	100	94	89	85
		Deformación	4154	2700	1953	1508	1215	1007	852	731	635	556	490	435	388	347	312	282	255

Nota: i) Se considera un acero de calidad ASTM A792 Gr.37 (Fy = 2600 kg/cm2). ii) Se considera un módulo de Elasticidad, E = 2070000 kg/cm2.

iii) Se considera una deformación admisible igual a L/200.

iv). Se considera ancho de apoyo Ls: 50 mm v) "-" Carga admisible menor a 30 kg/m2. vi). No se considera el peso propio del ISOLANA en la tabla de carga.

vii) Aislación: Lana Roca (100 kg/m3). Módulo de elasticidad: 4 (MPa). Módulo de corte: 3 (MPa).

Resistencia al corte: 60 (kPa). Resistencia a la compresión: 70 (kPa).

Carga Kover Lana

								Carg	as Admi	isibles (k	kg/m²)								
Condición	Espesor	Tipo de						Distan	ias entr	e costan	eras (m)							
	mm	Carga	1.00	1.25	1.50	1.75	2.00	2.25	2.50	2.75	3.00	3.25	3.50	3.75	4.00	4.25	4.50	4.75	5.00
	40-90	Esfuerzo Deformación	172 5909	138 3264	115 2045	99 1394	86 1009	77 763	69 596	63 477	57 390	53 324	49 272	46 232	43 199	40 172	38 150	36 132	34 116
	50-100	Esfuerzo Deformación	172 6036	138 3367	116 2131	99 1468	87 1074	77 820	69 647	63 524	58 432	53 362	49 307	46 264	43 228	40 199	38 175	36 154	34 137
	80-130	Esfuerzo	174	140	117	101	88	78	70	64	58	54	50	46	43	41	38	36	35
	100-150	Deformación Esfuerzo	6433 175	3685 141	2397 118	1695 101	1272 89	995 79	803 71	664 64	559 59	478 54	413 50	361 47	317 44	281 41	251 39	225 37	202 35
	100-150 125-175	Deformación Esfuerzo	6702 176	3901 142	2576 119	1848 102	1405 90	1112 80	908 72	758 65	644 59	556 55	484 51	426 47	378 44	338 41	303 39	273 37	247 35
	125-175	Deformación Esfuerzo	7041 176	4172 143	2801 120	2040 103	1571 90	1259 80	1039 72	876 66	752 60	654 55	574 51	509 48	455 44	409 42	369 39	335 37	305 35
	150-200	Deformación	7380	4443	3026	2232	1738	1407	1171	995	859	752	665	592	532	480	436	397	364
	40-90	Esfuerzo Deformación	193 5010	154 2825	129 1797	110 1237	97 901	86 682	77 533	70 426	64 347	59 287	55 241	51 204	48 174	45 150	43 130	41 114	39 100
	50-100	Esfuerzo Deformación	193 5160	155 2944	129 1896	110 1322	97 974	86 746	77 590	70 476	64 392	59 327	55 277	51 236	48 204	45 177	43 154	41 136	39 120
	80-130	Esfuerzo Deformación	194 5615	155 3302	129 2189	111 1570	97 1188	86 935	78 756	70 626	65 526	60 449	55 387	52 337	48 295	45 260	43 231	41 206	39 184
	100-150	Esfuerzo	194	155	130	111	97	86	78	71	65	60	55	52	48	46	43	41	39
	125-175	Deformación Esfuerzo	5918 194	3538 156	2382 130	1732 111	1328 98	1058 87	866 78	724 71	615 65	530 60	461 55	404 52	357 48	318 46	284 43	255 41	230 39
	120-175	Deformación Esfuerzo	6293 195	3830 156	2620 130	1933 112	1502 98	1210 87	1001 78	846 71	726 65	631 60	553 56	489 52	436 49	390 46	351 43	318 41	288
	150-200	Deformación	6665	4119	2856	2132	1673	1361	1136	967	836	731	646	575	515	464	420	381	348

Carga Isolana

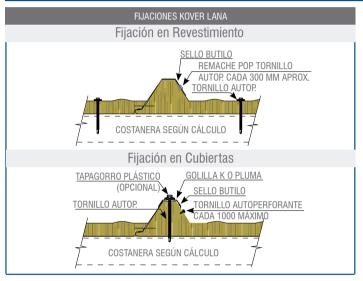
								Ca	rgas Ad	misibles	(kg/m²)							
Condición	Espesor	Tipo de						Dista	ncias er	itre cost	aneras ((m)							
de apoyo	mm	Carga	1.00	1.25	1.50	1.75	2.00	2.25	2.50	2.75	3.00	3.25	3.50	3.75	4.00	4.25	4.50	4.75	5.00
	40	Esfuerzo	406	308	249	208	179	157	140	126	115	106	96	84	74	65	58	52	47
	40	Deformación	534	390	298	234	188	153	126	105	88	74	63	54	47	40	35	31	-
	F0	Esfuerzo	482	379	307	258	222	195	174	157	143	132	121	106	93	83	74	66	60
	50	Deformación	671	499	387	309	252	208	173	145	123	105	90	78	68	59	52	46	40
	80	Esfuerzo	482	386	321	276	241	214	193	175	161	148	138	129	121	113	107	102	96
	00	Deformación	1087	829	661	540	450	380	324	278	241	209	183	161	142	125	111	99	89
	100	Esfuerzo	482	386	321	276	241	214	193	175	161	148	138	129	121	113	107	102	96
	100	Deformación	1365	1051	844	697	585	498	428	371	324	284	250	222	197	176	157	141	127

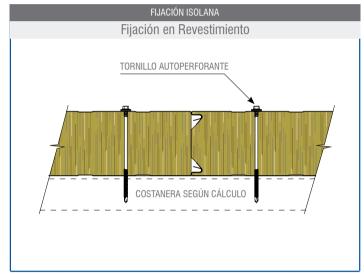
Carga Isolana

								Ca	rgas Ad	misibles	(kg/m²)								
Condición	Espesor	Tipo de						Dista	ncias en	itre cost	aneras (m)							
de apoyo	mm	Carga	1.00	1.25	1.50	1.75	2.00	2.25	2.50	2.75	3.00	3.25	3.50	3.75	4.00	4.25	4.50	4.75	5.00
		Esfuerzo	482	386	321	276	241	214	193	175	161	148	138	129	121	113	107	102	96
	125	Deformación	1712	1329	1075	893	756	649	562	491	432	381	339	302	270	242	218	197	178
		Esfuerzo	482	386	321	276	241	214	193	175	161	148	138	129	121	113	107	102	96
	150	Deformación	2060	1607	1306	1091	928	800	697	612	541	481	430	385	346	313	283	257	233
	40	Esfuerzo	211	168	139	118	103	91	81	73	67	61	57	53	49	46	44	41	39
	40	Deformación	685	488	372	296	241	201	170	145	125	109	95	84	74	66	59	52	47
	50	Esfuerzo	214	171	141	120	104	92	82	74	67	62	57	53	50	47	44	42	39
	50	Deformación	835	606	468	376	310	261	222	191	166	146	129	114	101	91	81	73	66
	00	Esfuerzo	219	175	145	123	107	94	84	76	69	63	58	54	51	47	45	42	40
	80	Deformación	1286	961	759	621	520	444	384	335	296	263	235	211	190	172	156	143	130
	100	Esfuerzo	222	177	147	125	108	95	85	77	70	64	59	55	51	48	45	42	40
	100	Deformación	1585	1198	954	785	662	568	494	434	385	343	308	278	252	230	210	192	176
	125	Esfuerzo	224	179	148	126	109	96	86	77	70	65	60	55	52	48	45	43	40
	123	Deformación	1959	1493	1197	992	840	725	633	559	497	446	402	365	332	303	278	256	236
	150	Esfuerzo	225	180	149	127	110	97	87	78	71	65	60	56	52	49	46	43	41
	130	Deformación	2332	1789	1441	1199	1020	882	773	685	611	550	498	452	413	379	349	322	298
	40	Esfuerzo	225	179	149	127	111	99	89	80	74	68	63	59	55	52	49	46	44
	40	Deformación	671	481	367	291	236	196	164	140	119	103	89	78	68	60	53	47	42
	50	Esfuerzo	226	180	150	128	111	99	89	81	74	68	63	59	55	52	49	46	44
	30	Deformación	821	598	463	372	306	256	217	186	161	140	123	108	95	85	75	67	60
	80	Esfuerzo	229	182	151	129	112	100	89	81	74	68	63	59	55	52	49	46	44
		Deformación	1269	951	752	616	516	440	380	332	291	258	229	205	184	166	150	135	123
	100	Esfuerzo	230	183	152	130	113	100	90	81	74	69	64	59	55	52	49	47	44
	100	Deformación	1565	1185	945	779	657	564	490	430	381	339	304	273	246	223	203	185	169
	125	Esfuerzo	231	184	153	130	114	101	90	82	75	69	64	59	56	52	49	47	44
	120	Deformación	1935	1477	1185	983	834	720	629	555	494	442	398	360	327	298	272	249	229
	150	Esfuerzo	232	185	153	131	114	101	91	82	75	69	64	60	56	52	49	47	44
		Deformación	2303	1768	1426	1188	1012	876	768	681	608	547	494	449	409	374	343	315	291

vii) Aislación: Lana Roca (100 kg/m3). Módulo de elasticidad: 4 (MPa). Módulo de corte: 3 (MPa).

Resistencia al corte: 60 (kPa). Resistencia a la compresión: 70 (kPa).


Nota:
i) Se considera un acero de calidad ASTM A792 Gr.37 (Fy = 2600 kg/cm2).
ii) Se considera un módulo de Elasticidad, E = 2070000 kg/cm2.
iii) Se considera una deformación admisible igual a L/200.
iii) Se considera el peso propio del ISOLANA en la tabla de carga.


Propiedades Térmicas

PROPIEDADES TÉRMICAS KOVER LANA										
	Cubie	ertas	Revestimientos							
Espesor Valle (mm)	Resistencia (m² K/W)	Transmitancia (W/m²K)	Resistencia (m² K/W)	Transmitancia (W/m²K)						
40	1,321	0,757	1,352	0,740						
50	1,576	0,634	1,607	0,622						
80	2,277	0,439	2,308	0,433						
100	2,879	0,347	2,911	0,344						
125	3,457	0,289	3,491	0,286						
150	4,006	0,250	4,041	0,247						

	PROPIEDADES TÉRMICAS ISO LANA										
	Cubi	ertas	Revestimientos								
Espesor Valle (mm)	Resistencia (m² K/W)	Transmitancia (W/m²K)	Resistencia (m² K/W)	Transmitancia (W/m²K)							
40	1,281	0,781	1,251	0,799							
50	1,559	0,641	1,529	0,654							
80	2,392	0,418	2,362	0,423							
100	2,948	0,339	2,918	0,343							
125	3,642	0,275	3,612	0,277							
150	4,337	0,231	4,307	0,232							

Esquemas de Instalación

Propiedades Térmicas

		Espesor Panel (mm)								
U transmitancia	50	60	80	100	120	150	180	200		
Wm2 K	0,760	0,630	0,470	0,380	0,320	0,250	0,218	0,195		
Kcal/m2 h °C	0,655	0,543	0,405	0,328	0,276	0,216	0,188	0,168		

- Isolana Acústico es un panel construido por una doble chapa de acero galvanizado y un núcleo de Lana de Roca de alta densidad.
- Densidad: 100 kg/m³ +-10%
- Densidad diferente posible bajo pedido.
- Coeficiente de conductividad térmica hasta = 0,039 watt/mk
- Absorción acústica
 Espesor mm 50: aw = 0,90
 Espesor mm 80: aw = 0,95
 Espesor mm 100: aw = 0,95
- Aislamiento acústico
 Espesor mm 50: rw = 31 db
 Espesor mm 80: rw = 34 db
 Espesor mm 100: rw = 35 db

Espesores (mm) 50 80 100

Adaptabilidad Selection

Bertorado

Bert

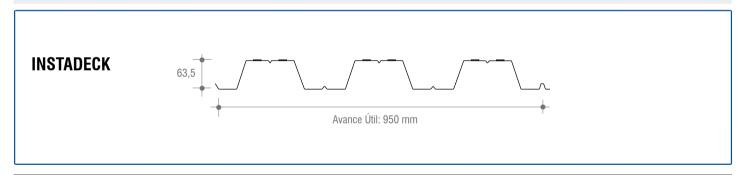
Revestimientos

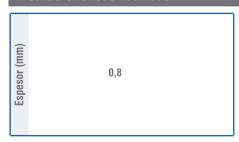
Horizontal

Vertical

Propiedades Térmicas

	Espesor Panel (mm)								
U transmitancia	50	60	80	100	120	150	180	200	
Wm2 K	0,760	0,630	0,470	0,380	0,320	0,250	0,218	0,195	
Kcal/m2 h °C	0,655	0,543	0,405	0,328	0,276	0,216	0,188	0,168	


Cargas Admisibles (kg/m²)


Condición	Espesor				Dist	ancias entre	costaneras	(m)				(Kg/m²)
de apoyo	mm	1,5	2	2,5	3	3,5	4	4,5	5	5,5	6	(Ng/III-)
	50	165	120	95	80	70	60	55	-	-	-	13,83
	60	195	145	115	95	85	70	65	55	-	-	14,83
	80	265	200	160	130	110	100	85	80	70	60	16,83
	100	320	240	190	160	135	120	105	95	85	80	18383
	120	325	240	195	160	135	120	105	95	85	80	20,83
	150	325	240	195	160	135	120	105	95	85	80	23,83
	180	345	260	205	170	145	130	115	100	90	85	26,83
	200	345	260	205	170	145	130	115	100	90	85	2883
	50	130	95	75	65	55	-	-	-	-	-	13,83
	60	160	115	95	75	65	55	50	-	-	-	14,83
	80	215	160	125	105	90	80	70	60	55	-	16,83
	100	255	190	150	125	110	90	80	70	60	55	18383
	120	260	195	155	130	110	90	80	70	60	55	20,83
	150	260	195	155	130	110	90	80	70	60	55	23,83
	180	260	195	155	130	110	90	80	70	60	55	26,83
	200	260	195	155	130	110	90	80	70	60	55	2883
	50	135	100	80	65	55	50	-	-	-	-	13,83
	60	165	120	95	80	70	60	55	-	-	-	14,83
	80	220	165	130	110	95	80	70	65	60	55	16,83
	100	280	210	165	140	120	105	90	80	70	65	18383
	120	285	215	170	140	120	105	95	80	70	65	20,83
	150	285	215	170	140	120	105	95	80	70	65	23,83
	180	285	215	170	140	120	105	95	80	70	65	26,83
	200	285	215	170	140	120	105	95	80	70	65	2883

Nota: VANO SIMPLE: p= Kg/mq uniformemente distribuido - Longuitud eficaz de apoyo: 50 mm. Limite de flecha normal: ℓ 1/200 VANO DOBLE: p= Kg/mq uniformemente distribuido - Longuitud eficaz de apoyo: 100 mm. Limite de flecha normal: ℓ 1/200

- La Placa Colaborante Instadeck®, se caracteriza por sus excelentes propiedades estructurales, su diseño geométrico recoge los criterios internacionales
 de diseño incorporando un sistema de unión longitudinal muy eficiente, seguro y de fácil instalación.
- Debido a que elimina el armado y desarmado de moldaje desmontable y reduce o elimina el número de alzaprimas es una excelente solución comparado con los sistemas de losa de hormigón armado tradicional.
- Ahorro de más del 20% en el uso de pernos conectores, con respecto a otras placas.
- Se fabrica en acero estructural grado 37, galvanizado G-90, según norma ASTM-A653.
- El largo máximo está limitado por la condición de transporte y manipulación (Mín. 1,5 m Máx. 15 m), largos superiores sujetos a consulta.

Notas: Espesores de 1,0 mm. y 1,2 mm. deben ser consultados a CINTAC $^{\circ}$

Propiedades estructurales

	Sobrecarga admisible losa compuesta (kg/m²)												
Espesor Hormigón Sobre Trapecio (cm)		Separación entre apoyos (m)											
	1,60	1,80	2,0	2,2	2,4	2,6	2,8	3,0	3,2	3,4	3,6	3,8	4,0
5	2000	1957	1624	1337	1138	949	799	677	578	496	427	369	319
6	2000	2000	1818	1497	1281	1075	905	768	656	563	485	419	363
8	2000	2000	2000	1815	1554	1328	1119	950	812	698	602	521	452
10	2000	2000	2000	2000	1827	1581	1333	1132	968	832	719	622	540
12	2000	2000	2000	2000	2000	1822	1546	1314	1124	967	835	724	628

- Las tablas están calculadas para la placa de espesor 0,8 mm.
- Las longitudes de apoyos y sobrecargas admisibles pueden ser redefinidas al conocer las condiciones de diseño específicas de un proyecto. En particular para losas continuas, es factible utilizar separaciones de apoyo mayores a los señalados según se iustifique en Memoria de Cálculo.
- 3. La determinación de las sobrecargas admisibles se basa en las recomendaciones del Steel Deck Institute del 91 (SDI), y son las mínimas de las obtenidas por flexión, deflexión (d/360) y corte. Hormigón: H25 mínimo.
- 4.- Las sobrecargas admisibles son consideradas uniformemente distribuidas y contemplan el peso propio de la placa de acero y del hormigón.
- 5.- Para la selección de la separación entre apoyos, espesor de placa de acero y espesor de hormigón es indispensable utilizar ésta tabla en conjunto con la de "Longitud máxima sin alzaprimado".
 6.- Los valores de la tabla son aplicables si la placa es fijada adecuadamente a la estructura de apoyo en todos los valles, además se debe restringir el giro en los bordes discontinuos de la losa. Los conectores de corte deben verificar una resistencia última al corte de 11,2 [Ton] por metro de ancho de placa en todos los apoyos.
- 7.- Los valores señalados no son aplicables a losas simplemente apoyadas con bordes laterales sin apoyo y losas con cargas vivas móviles (estacionamientos), en cuyo caso se deberá consultar para su análisis específico.

 8.- La placa debe ser fijada para actuar como plataforma de trabajo y evitar el derrame de hormigón. Para placas con separación entre apoyos mayor a 1,5 m. deben fijarse en bordes y uniones placa placa en la mitad de la luz o cada 90 cm., el que
- 9.- Hormigón H25 mínimo, cuyo espesor se mide sobre la cresta del panel, y su valor mínimo es de 5 cm.
- 10.- Adicionalmente a estas notas se recomienda seguir las recomendaciones establecidas en el manual del producto.

Control de deformaciones y condiciones de servicio

Espesor Total		Distancia Máxima entre Apoyos (cm)							
Placa + Hormigón (cm)									
11,35	250	306	363						
12,35	272	333	395						
14,35	316	387	459						
16,35	360	441	523						
18,35	404	495	587						

- 1.- Los valores detallados corresponden a los criterios del Steel Deck Institute y deberán utilizarse a menos que se realice un análisis más exhaustivo.
 2.- La capacidad estructural de la Placa Colaborante debe verificarse para la luz de diseño, según las sobrecargas de uso y longitud máxima sin alzaprimado indicadas en las tablas I y III.
- 3.- Para que la Placa funcione con tramos contínuos, se requiere armadura superior en los apoyos intermedios, a definir por el ingeniero calculista del proyecto

Longitud máxima sin alzaprimado (cm)

3	(- /								
Condición de Apoyo	Altura de Hormigón sobre las Crestas de la Placa (cm)								
	5	6	8	10	12				
	209	200	187	175	166				
	277	267	250	236	224				
	285	274	256	241	229				

- 1.- Las longitudes anteriores están determinadas de acuerdo a la especificación del SDI (Steel Deck Institute 1991) para resistir el peso de la lámina del concreto fresco y una carga de construcción distribuida de 100 Kg/m2 o puntual de 200 kg. al centro; considerándose como limitantes un esfuerzo de trabajo de 1560 kg/cm2 o una deflexión máxima de L/180 ó 3/4".
- 2.- Los valores que aparecen en la tabla súperior, solo serán válidos si la lámina ha sido correctamente fijada a las vigas de apoyo y si el hormigonado es controlado para no sobrepasar los límites definidos. 3.- La separación entre apoyo se considera entre ejes.

Cubicación y cargas de peso propio

Espeso	or de losa		Cubicación y Peso Propio					
Total a. (am)	Hamming a compage	Volumen	Peso Propio (Kg/m²)					
Total e _t (cm)	Hormigón e _h (cm) ⁽⁵⁾	Hormigón (m3/m²) (6)	Hormigón	Instadeck	Total			
11,35	5,0	0,085	204	8,00	212			
12,35	6,0	0,095	228	8,00	236			
14,35	8,0	0,115	276	8,00	284			
16,35	10,0	0,135	324	8,00	332			
18,35	12,0	0,155	372	8,00	380			

Notas:

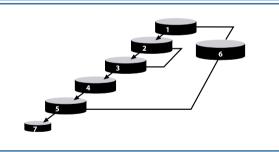
- 1.- Espesor de hormigón H25 sobre las crestas de los trapecios de la Placa Instedeck.
- 2.- Volumen total de hormigón por metro cuadrado de Placa Instadeck (sin considerar pérdidas).
- 3.- Armadura de retracción mínima de 1.8 cm2/m en cada dirección o equivalente usar mallas comerciales que aseguren las cuantías detalladas. Acero A63-42H mínimo.

Propiedades de la sección transversal

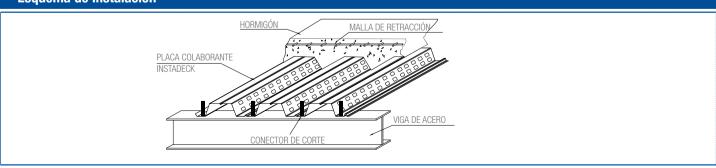
		Sección	ı Efectiva		
Espesor (2) (mm)	Peso (Kg/m²)	I+ (cm4/m)	I- (cm ⁴ /m)	S+ (cm ³ /m)	S- (cm ³ /m)
0,8	8,00	74,60	69,39	18,62	19,23

- 1.- Propiedades en base al área efectiva de la sección transversal de la lámina. Esta corresponde a una reducción de la sección gruesa para tomar en cuenta el efecto del pandeo local (*).
 2.- El cálculo se realizó considerando el espesor del acero base, es decir, al espesor nominal se le descontó 0.04
- mm., correspondiente al espesor total del revestimiento de galvanizado en ambas caras de la lámina.
- I+: Momento de Inercia efectivo positivo para determinación de flexión (ala superior comprimida).
- I-: Momento de Inercia efectivo negativo para determinación de flexión (ala inferior comprimida). S+: Módulo resistente efectivo positivo para la determinación de capacidad de carga (ala superior comprimida).
- S-: Módulo resistente efectivo negativo para la determinación de capacidad de carga (ala inferior comprimida).

Propiedades de la sección compuesta (placa acero+hormigón)

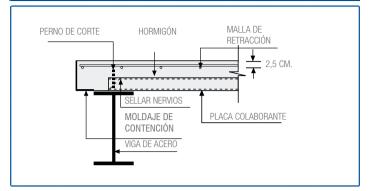

Espesor Placa	Hormigón (cm) (1)	Inercia (cm4/ m) (1)
	5	10132
	6	12660
0,8	8	18826
	10	26619
	12	36220

(1) Inercia efectiva para la determinación de deflexiones, referida al hormigón según el American Society of Civil Engineers (ASCE).


Metodología de Cálculo

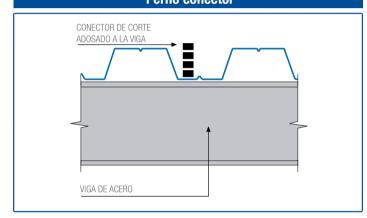
Datos de entrada:

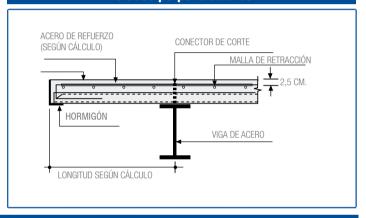
- 1.- Distancia entre vigas de apoyo. Carga uniformemente distribuida solicitante.
- 2.- Determinación de espesor de hormigón requerido (TABLA I).
- 3.- Verificación control de deformaciones y condiciones de servicio (TABLA II).
- 4.- Chequeo de alzaprimado temporal (TABLA III).
- 5.- Evaluación técnico económica de la solución (TABLA IV).
- 6.- Optimizar diseño replanteando distancia entre vigas de apoyo.
- 7.- Fin.


Esquema de Instalación

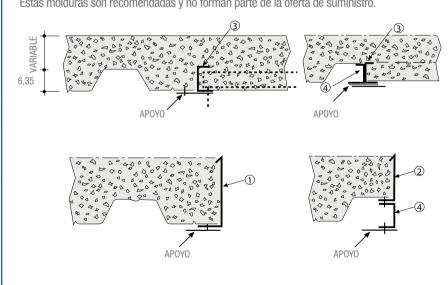


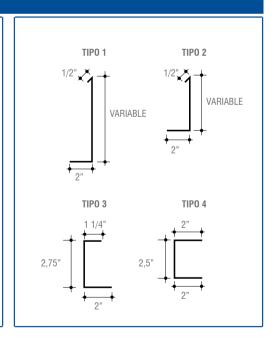
Detalles


Condición borde perpendicular


Condición de borde paralelo

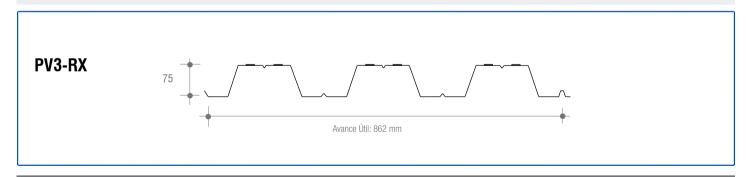
Perno conector

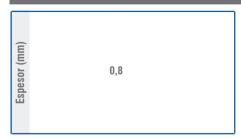



Volados perpendiculares

Molduras

Estas molduras son recomendadas y no forman parte de la oferta de suministro.




Para otros detalles de instalación consultar a CINTAC®

Nuestros productos están en constante proceso de innovación y desarrollo, por lo que pueden sufrir modificaciones.

- La Placa Colaborante PV3-RX se caracteriza por sus excelentes propiedades estructurales orientada a proyectos de alta especificación, lo que permite alcanzar mayores luces sin alzaprimas, a la vez de conseguir mayor capacidad de carga.
- Su diseño geométrico recoge los criterios internacionales incorporando un sistema de unión longitudinal muy eficiente, seguro y fácil de instalar.
- Se fabrica en acero estructural grado 37, galvanizado G-90, según norma ASTM-A653.
- El largo máximo está limitado por la condición de transporte y manipulación (Mín. 1,5 m Máx. 14,0 m), largos superiores sujetos a consulta.

Peso Kg/m² 5888

Notas: Espesores de 1,0 mm. y 1,2 mm. deben ser consultados al Departamento de Especificación.

Propiedades estructurales

	Sobrecarga admisible losa compuesta (kg/m²) (1)									
Altura Total					Separación en	tre apoyos (m)				
	2,00	2,25	2,50	2,75	3,00	3,25	3,50	3,75	4,00	4,25
12,5	1571	1249	1015	838	681	548	443	328	-	-
14,0	1844	1466	1184	912	726	581	466	373	298	-
15,0	2026	1565	1215	956	759	606	485	386	306	240
16,0	2165	1647	1277	1003	795	633	504	401	316	245
17,0	2279	1733	1342	1052	833	662	525	416	327	252
18,0	2397	1821	1408	1102	871	691	546	432	338	258

(1): La determinación de las sobrecargas admisibles se basa en las recomendaciones del Steel Deck Institute del 91 (SDI), y son las mínimas de las obtenidas por flexión, deflexión (L/360) y corte.

- 1.- Hormigón: H25 mínimo, cuyo espesor se mide sobre la cresta del panel, y su valor mínimo es de 5 cm.
 2.- Las sobrecargas admisibles son consideradas uniformemente distribuídas y contemplan el peso propio de la placa de acero y del hormigón.
- Para la selección de la separación entre apoyos, espesor de placa de acero y espesor de hormigón es indispensable utilizar esta tabla en conjunto con la de "Longitud máxima sin alzaprimado"
- 4.- Los valores de la tabla son aplicables si la placa es fijada adecuadamente a la estructura de apoyo en todos los valles, además se debe restringir el giro en los bordes discontinuos de la losa. Los conectores de corte deben sobresalir al menos 1 1/2" de la cresta de la placa y verificar una resistencia última al corte de 3.183 (Kg/m) lo que es equivalente a colocar 2 pernos conectores (de resistencia mínima 1.592 Kg.) por metro de ancho de placa en todos los apoyos.
- Los valores señalados no son aplicables a losas simplemente apoyadas con bordes laterales sin apoyo y losas con cargas vivas móviles (estacionamientos), en cuyo caso se deberá consultar para su análisis específico.
- 6.- La placa debe ser fijada para actuar como plataforma de trabajo y evitar el derrame de hormigón, en ningún caso la separación de fijaciones placa-placa (traslape longitudinal) debe ser mayor a 90 cm.
 9.- Armadura de retracción mínima de 1,8 cm2/m. en cada dirección o equivalentemente usar mayas comerciales que aseguren las cuantías detalladas. Acero A63-42H mínimo.
 10.- Para que la placa funcione con tramos contínuos, se requiere armadura superior en los apoyos intermedios, a definir por el ingeniero calculista del proyecto.
- 11.- Placa disponible en longitudes de 1,5 hasta 12 m.
- 12.- Espesores de placa de 1 y 1.2 mm, a pedido.
- 13.- Adicionalmente a estas notas se recomienda seguir las recomendaciones establecidas en el manual del producto.

Control de deformaciones y condiciones de servicio

Espesor Total		Distancia Máxima entre Apoyos (cm)	
Placa + Hormigón) (cm)			
12.5	275	338	400
14	308	378	448
15	330	405	-
16	352	432	-
17	374	459	-
18	396	-	-

- 1.- Los valores detallados corresponden a los criterios del Steel Deck Institute y deberán utilizarse a menos que se realice un análisis más exhaustivo.
 2.- La capacidad estructural de la Placa Colaborante debe verificarse para la luz de diseño, según las sobrecargas de uso indicadas en las tablas de carga.

Longitud máxima sin alzaprimado (cm)

Condición	Altura de Hormigón sobre las Crestas de la Placa (cm)						
de Apoyo	5.0	6.5	7.5	8.5	9.5	10.5	
	63	248	239	231	223	217	
	340	323	312	303	294	286	
	352	333	323	313	304	295	

- 1.- Las longitudes anteriores están determinadas de acuerdo a la especificación del SDI (Steel Deck Institute 1991) para resistir el peso de la lámina, del concreto fresco y una carga de construcción distribuida de 100 kg/m2 o puntual de 200 kg al centro; considerándose como limitantes un esfuerzo de trabajo de 1560 kg/cm2 o una deflexión máxima de L/180 ó 3/4".
- 2.- Los valores que aparecen en la tabla superior, sólo serán válidos si la lámina ha sido correctamente fijada a las vigas de apoyo y si el hormigonado es controlado para no sobrepasar los límites definidos.
 3.- Los claros deberán considerarse a ejes, es decir, a centros de apoyo.

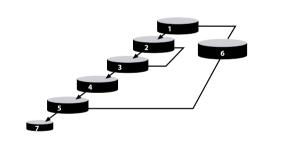
Cubicación y cargas de peso propio

Espeso	r de losa	Cubicación y Peso Propio					
Total e _t (cm)	Hormigón e _h (cm) ⁽¹⁾	Volumen Hormigón (m3/m²) ⁽²⁾	Peso Propio (Kg/m²)				
iotal of (cill)			Hormigón	PV3-RX	Total		
12,5	5,0	0,086	206,4	8,84	215,2		
14	6,5	0,101	242,4	8,84	251,2		
15	7,5	0,111	266,4	8,84	275,2		
16	8,5	0,121	290,4	8,84	299,2		
17	9,5	0,131	314,4	8,84	323,2		
18	10,5	0,141	338,4	8,84	347,2		

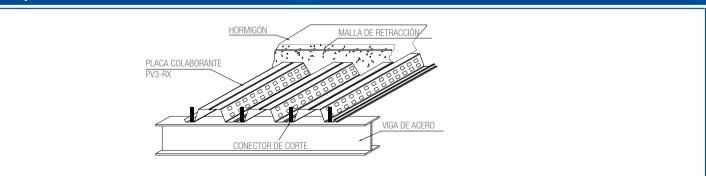
- (1): Espesor de Hormigón H25 sobre las crestas de los trapecios de la Placa PV-3RX. (2): Volúmen total de hormigón por metro cuadrado de Placa PV-3RX (sin considerar pérdidas).

Propiedades de la sección transversal de la lámina de acero PV3-RX

Sección Bruta (1)				Sección Efectiva (2)						
Espesor (3) (mm)	Peso (Kg/m²)	I (cm4/m)	S + (cm ³ /m)	S - (cm³/m)	Espesor (mm)	Peso (Kg/m²)	l + (cm4/m)	l - (cm ⁴ /m)	S + (cm ³ /m)	S - (cm³/m)
0,8	8,84	110,4	28,90	30,00	0,8	8,84	108,06	109,01	27,47	29,27


- (1): Propiedades en base al área gruesa de la lámina(*).
- (2): Propiedades en base al área efectiva de la sección transversal de la lámina. Esta corresponde a una reducción de la sección gruesa para tomar en cuenta el efecto del pandeo local(*).
- (3): El cálculo se realizó considerando el espesor del acero base, es decir, al espesor nominal se le descontó 0.04 mm correspondiente al espesor total del revestimiento de galvanizado en ambas caras de la lámina.
- (*) Las propiedades están referidas a un avance útil de 0.861 m.

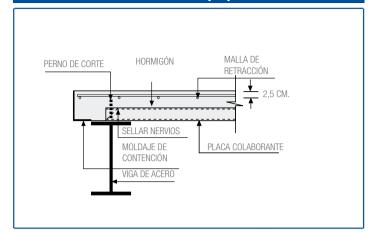
- I+: Momento de inercia efectivo positivo para determinación de flexión (ala superior comprimida).
- I-: Momento de inercia efectivo negativo para determinación de flexión (àla inferior comprimida).
- S+: Módulo resistente efectivo positivo para la determinación de capacidad de carga (ala superior comprimida).
- S-: Módulo resistente efectivo negativo para la determinación de capacidad de carga (ala inferior comprimida).


Metodología de Cálculo

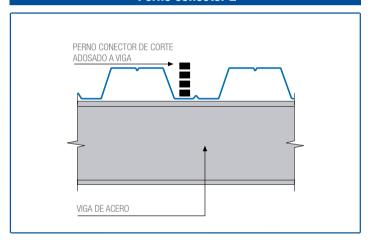
Datos de entrada:

- 1.- Distancia entre vigas de apoyo. Carga uniformemente distribuida solicitante.
- 2.- Determinación de espesor de hormigón requerido (TABLA I).
- 3.- Verificación control de deformaciones y condiciones de servicio (TABLA II).
- 4.- Chequeo de alzaprimado temporal (TABLA III).
- 5.- Evaluación técnico económica de la solución (TABLA IV).
- 6.- Optimizar diseño replanteando distancia entre vigas de apoyo.
- 7.- Fin.

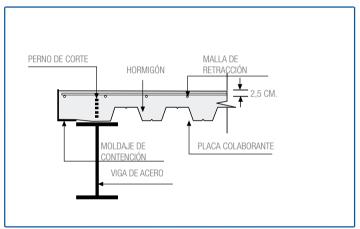
Esquema de Instalación

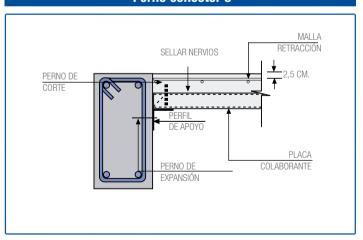


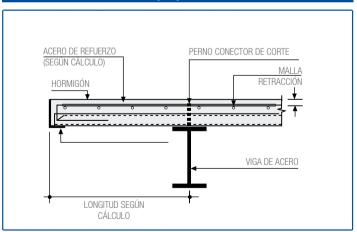
Detalles


Perno conector

PERNO DE CORTE PERFIL DE APOYO PLACA COLABORANTE


Condición de borde perpendicular


Perno conector 2


Condición de borde paralelo

Perno conector 3

Volados perpendiculares

Notas:

Para otros detalles de instalación consultar a CINTAC®.

Nuestros productos están en constante proceso de innovación y desarrollo, por lo que pueden sufrir modificaciones.

